Reducing the gender gap in the physics classroom

Mercedes Lorenzo,[†] Catherine H. Crouch,[‡] and Eric Mazur Department of Physics, Harvard University

†IES Universidad Laboral, Albacete, Spain ‡ Department of Physics and Astronomy, Swarthmore College

Why be concerned?

- Boys outperform girls on K-12 standardized science tests (NAEP, TIMSS)
- K-12 science gender disparities increase with age
- □ In AP physics only 36% (AP-B) or 27% (AP-C) of students are girls
- Only 22% of bachelor's degrees in physics are earned by women

Pedagogy and gender

Some proposed sources of K-12 gender gap:

- Girls have less hands-on experience with science
- □ Science perceived as a male activity: girls are less confident and encouraged less
- ☐ Girls perceive (physical) science as less beneficial to society
- Teachers often interact less with girls than with boys
- Boys often dominate classroom activities

Pedagogy and gender

Some teaching practices that appear to help:

- Placing science in a wider context
- □ Hands-on experiences
- Non-competitive environment
- Opportunities for all students to ask and explain
- Frequent feedback (praise and constructive criticism) to all students

Interactive engagement

Research-based pedagogies:

- Involve all students actively in learning
- □ Require students to articulate their ideas
- Frequently involve collaborative or cooperative activities
- □ Frequently involve hands-on activities

Student learning gains demonstrated thoroughly

Do these pedagogies help female students?

- □ Calculus-based introductory mechanics for nonmajors at Harvard University, 1990 - 1997
- □ 150-200 students each year, 30-40% women
- Administered Force Concept Inventory as preand post-test

Three pedagogies:

- □ Traditional (passive lecturing)
- Partially interactive (IE1):
 Peer Instruction in class
 traditional discussion section
- □ Fully interactive (IE2):

 Peer Instruction in class

 Tutorials and cooperative groups in section

Peer Instruction:

- Lectures interspersed with conceptual questions
- All students given time to think, respond, and discuss
- Students gain conceptual understanding
- Quantitative problem-solving skills remain strong

Crouch and Mazur, *Am. J. Phys.* **69** (9), 970 (2001).

Tutorials: (Univ. of Washington PERG)

- Students work in small groups through guided exercises
- Exercises focus on research-identified student difficulties
- Exercise require students to explain their ideas

Cooperative group problem solving: (Heller group)

- Students instructed in problem-solving strategies
- Groups of three work on challenging problems

Results: FCI pretest

Female students start out behind

Results: FCI posttest

Fully interactive instruction eliminates gap!

Results: FCI posttest

IE2: similar numbers of male and female high scorers

Results: FCI normalized gain

$$g = \frac{post - pre}{100 - pre}$$

Results: grades

More comparable grade distributions with IE2

Why IE2?

- Consistent emphasis on concepts and understanding
- Provides more practice articulating ideas
- May increase female students' confidence and comfort with interaction
- Research required to understand this!

Does it always work?

- Algebra-based: females gained more, but didn't catch up
- ☐ Calculus-based: may be saturating the test

Does it always work?

□ Reformed methods often help, but not always (Finkelstein A21.003)

Conclusions

In the Harvard calculus-based course:

- □ All students benefit from interactive instruction (IE1 and IE2)
- ☐ FCI gender gap eliminated in IE2 course
- Comparable number of male and female high scorers in IE2
- Grade distributions become more balanced

Lorenzo, Crouch, and Mazur, Am. J. Phys. 74 (2), 118 (2006).

Talk posted at http://mazur-www.harvard.edu

Data tables: FCI and FBT

Group	Year	N^{M}	N ^F	MBT (%)				
				S^{M}	S ^F	$S^{M} - S^{F}$	<i>p</i> -value	
Т	1990	61	44	69 (12)	63 (15)	5.5	0.0452	
	1991	105	61	75 (12)	68 (13)	7.1	0.0004	
	1993	91	52	75 (13)	70 (12)	4.4	0.0462	
	1994	121	77	79 (13)	72 (12)	6.6	0.0003	
IE1	1995	115	61	79 (13)	70 (13)	8.3	< 0.0001	
	1996	94	52	77 (13)	71 (13)	5.9	0.0082	
IE2	1997	67	47	82 (14)	78 (13)	3.8*	0.144	

Group	FCI pretest score (%)				FCI posttest score (%)			
	S_i^M	S_i^F	$S_i^M - S_i^F$	<i>p</i> -value	S_f^M	S_f^F	$S_f^M - S_f^F$	<i>p</i> -value
Т	-	ı	_	_	82 (13)	71 (16)	10	0.0004
	74 (15)	62 (16)	12	< 0.0001	86 (8.6)	78 (11)	7.9	< 0.0001
	72 (14)	61 (14)	11	< 0.0001	88 (7.0)	80 (11)	8.2	< 0.0001
	75 (15)	60 (16)	15	< 0.0001	89 (8.1)	81 (12)	7.6	< 0.0001
IE1	72 (18)	60 (17)	13	< 0.0001	90 (9.4)	83 (14)	7.4	< 0.0001
	71 (19)	61 (19)	9.8	0.0039	90 (11)	87 (10)	3.3*	0.0828
IE2	71 (19)	62 (20)	8.5	0.0205	92 (11)	91 (8.3)	1.5*	0.429

Data tables: FCI gains

Group	FCI gain (%)				FCI average normalized gain (%)			
	G^{M}	G^F	$G_i^M - G_i^F$	<i>p</i> -value	< <i>g</i> > ^M	< <i>g</i> > ^F	$ \langle g \rangle^M - \langle g \rangle^F $	<i>p</i> -value**
Т	9.2	10	1		0.33	0.26	0.07	
	12 (11)	17 (13)	-4.3	0.0262	0.47	0.43	0.04*	0.6126
	16 (12)	18 (11)	-2.7*	0.1713	0.56	0.47	0.09*	0.7154
	14 (12)	21 (11)	-7.0*	< 0.0001	0.56	0.53	0.03*	0.5776
IE1	18 (14)	24 (15)	-5.1	0.0228	0.66	0.58	0.08*	0.6462
	20 (14)	26 (16)	-6.5	0.0103	0.67	0.67	0.00*	0.3818
IE2	22 (14)	29 (18)	-7	0.0197	0.73	0.75	-0.02*	0.9764

** These p-values are calculated from the distributions of individualized normalized gain for males and for females. No p-values are calculated for the T group because of the lack of a pretest; the gains are calculated using the average IE pretest.

IE1 grade distribution

FCI low and high scorers

Both male and female low posttest scores eliminated Comparable numbers of male and female high scorers

