Combining top-down and bottom-up: Nanophotonics with silica and ZnO nanowires

Tobias Voss

Harvard School of Engineering and Applied Sciences

Institute of Solid State Physics University of Bremen, Germany

Acknowledgements

Geoff Svacha and Eric Mazur

ZnO nanowires: Sven Müller and Carsten Ronning, University of Göttingen, Germany

Mesoporous silica films: Frank Marlow, MPI Mühlheim, Germany

Ellipsometry measurements and simulations: Tina Shih and Rafael Gattass, Harvard University

Funding DFG (German Research Foundation) Grant VO1265/3-1 (research scholarship)

Zincoxide: non-toxic wide-bandgap semiconductor

ZnO refractive index

wurtzite crystal structure

ZnO nanowires electron microscope

optical microscope

ZnO nanowire specifications

diameter

80 – 400 nm typical: 250 nm

length

up to 80 µm

aspect ratio

up to 5×10^2

Pulling of silica nanowires/tapered fibers

Pulling of silica nanowires/tapered fibers

Pulling of silica nanowires/tapered fibers

Silica nanowire specifications

diameter

down to 20 nm

length

up to 20 mm

aspect ratio

up to 10⁶

Motivation

Combine two different worlds of nanowires

semiconductor NWs (ZnO)

glass NWs (silica)

bottom-up

top-down

active photonic devices

passive waveguides

electrical operation

link to macroscopic light sources

Motivation

waveguiding

optical coupling

Outline

- Optical coupling to the nanoscale
- High-order mode contributions
- Nonlinear optics in ZnO nanowires

Outline

- Optical coupling to the nanoscale
- High-order mode contributions
- Nonlinear optics in ZnO nanowires

substrates covered with mesoporous silica (n = 1.18)

emission from a ZnO nanowire

FDTD simulation

square of electric field in z direction

 d_{wire} = 200 nm, I_{vacuum} = 532 nm, n = 2

software:http://ab-initio.mit.edu/wiki/index.php/Meep

emission from a ZnO nanowire

emission angle 80°

Things to keep in mind:

- link between macro and nano world
- directed emission
- large index contrast

Outline

- Optical coupling to the nanoscale
- High-order mode contributions
- Nonlinear optics in ZnO nanowires

FDTD simulations

z component of electric field

(negative – zero – positive)

FDTD simulations

coupling efficiency

transmission spectrum

 $I_{air} = 2.8 \text{ x}$ wire diameter

 $I_{air} = 2.2 \text{ x}$ wire diameter

evanescent coupling from silica to ZnO

wire diameters: 1 a.u. separation: 0.2 a.u. wavelength: 3 a.u.

Things to keep in mind:

- single or multi-mode waveguiding
- wavelength-dependent losses

Outline

- Optical coupling to the nanoscale
- High-order mode contributions
- Nonlinear optics in ZnO nanowires

mesoporous silica (n = 1.18)

Band gap at room temperature (literature)

 $\overline{E}_{gap} = 3.370 \text{ eV}$

Band gap at room temperature (literature)

 $E_{gap} = 3.370 \text{ eV}$

Band gap from transmission spectrum

 $E_{gap} = (3.205 \pm 0.025) \text{ eV}$

Band gap shift

 $DE = (165 \pm 25) \text{ meV}$

Effective temperature of the ZnO nanowire

 $T = (550 \pm 50) \text{ K}$

Things to keep in mind:

- non-linear excitation of waveguide modes
- absorption measurement indicates band-gap shift

Summary and Conclusions

- Efficient coupling from silica to ZnO nanowires
- High-order waveguide modes
- Absorption measurement of band-gap shift

Outlook

- tight confinement of the field in ZnO nanowires subwavelength guiding and wiring
- multimode waveguiding optical coupling and sensing

 femtosecond-pulse excitation non-linear optics in nanowire

- normally n-type
- limited p-type doping
- large exciton binding energy

Literature data (Hauschild et al.)

phys. stat. sol. (c) **3**, No. 4, 976–979 (2006)