Nonlinear optics at the nanoscale

Ultrafast Optics 2007 Santa Fe, 5 September 2007

Rafael Gattass

Geoff Svacha

Limin Tong

Tobias Voss

240-nm wire

RMS roughness < 0.5 nm

Specifications

diameter D:	down to 20 nm
length L:	up to 90 mm
aspect ratio <i>D/L</i> :	up to 10 ⁶
diameter uniformity $\Delta D/L$:	2 x 10 ⁻⁶

Nature, 426, 816 (2003)

Points to keep in mind:

- easy fabrication
- atomic level smoothness
- malleable

• silica nanowires

manipulating light at the nanoscale

nanoscale nonlinear optics

coupling light into nanowires

coupling light into nanowires

coupling light into nanowires

280-nm nanowire

360 nm

450 nm

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 600-nm nanowire

Poynting vector profile for 500-nm nanowire

Poynting vector profile for 400-nm nanowire

Poynting vector profile for 300-nm nanowire

Poynting vector profile for 200-nm nanowire

coupling light between nanowires

coupling light between nanowires

coupling light between nanowires

intensity distribution

minimum bending radius: 5.6 μm

virtually no loss through 5 μ m corner!

450 nm

STATISTICS IN CONTRACTOR

420 nm

aerogel

in

use tapered fibers to couple light to nanoscale objects

- **ZnO nanowire specifications**
- diameter 80 400 nm
- length up to 80 µm
- aspect ratio 5 10²

FDTD simulation

ab-initio.mit.edu/wiki/index/Meep

coupling efficiency

coupling efficiency

single-mode cutoff

single-mode cutoff

single-mode cutoff

large diameter: multimode

small diameter: single mode

Points to keep in mind:

- large evanescent field
- tight confinement
- convenient coupling to nanoscale

• silica nanowires

manipulating light at the nanoscale

nanoscale nonlinear optics

nonlinear dispersion: $n = n_0 + n_2 I$

strong confinement \longrightarrow high intensity

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

nonlinear parameter

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

dispersion important!

dispersion:

- modal dispersion
- material dispersion
- waveguide dispersion
- nonlinear dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

nonlinear parameter

nanowire continuum generation

energy in nanowire < 100 pJ!

easy fabrication

convenient nanoscale light manipulation

nanoscale nonlinear optics

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur-www.harvard.edu