Two-photon microfabrication of structures containing the biopolymer Chitosan

C. R. Mendonca, D. S. Corrêa, P. Tayalia, G. Cosendey, D. S. dos Santos Jr., R. F. Aroca, and E. Mazur

Outline

Two-photon polymerization Sample preparation Experimental setup Results on the fabrication of the microstructures Conclusion

Two-photon polymerization

2PA: simultaneous absorption of two photons far from a material's linear absorption region.

 $R_{2PA} \propto I^2$

The absorption is confined to the focal volume.

High spatial resolution

Microstructures fabricated by two-photon polymerization

Applications of two-photon polymerization

Optics and Photonics

Doping microstructures with organic molecules and metals

fluorescence birefringence conductivity

Bio-applications

Fabrication using bio-compatible resins to biological applications

tissue engineering scaffolds fabrication of microneedle cell study

Chitosan

linear cationic polysaccharide obtained by deacetylation of chitin, which is normally found in crustaceans.

Applications

biodegradability biocompatibility bone regeneration drug-delivery bactericide action blood coagulation

Resin Preparation

Monomers

SR499

SR368

reduces the shrinkage upon polymerization

gives hardness to the polymeric structure

Photoinitiator

Resin preparation

- ethanol solutions containing SR368 (70%), SR499 (30%) and chitosan (1-20% by weight)
- ethanol is eliminated by evaporation at room temperature for 24 h
- add the photoinitiator (1% by weight) one hour before use

Two-photon polymerization setup

Two-photon polymerization

After fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

30 µm x 30 µm x 12 µm cube

SEM of microstructures containing chitosan

Microstructures show excellent integrity and good definition

Hardness measurements

Raman Spectroscopy

 λ_{exc} = 514 nm

Conclusion

We demonstrated the fabrication of microstructures containing chitosan via two-photon absorption polymerization.

The microstructures present integrity and good definition, allowing applications in bio-related fields.

Current work

IR absorption of the microstructures Two-photon absorption spectrum of Chitosan Cell growth studies (fibroblast)

Acknowledgments

National Science Foundation

Army Research Office

FAPESP and CAPES from Brazil

http://mazur-www.harvard.edu

Thank you

http://mazur-www.harvard.edu