Control of coherent optical phonons

Yale University New Haven, CT, 24 April 2008

Chris Roeser

Maria Kandyla

Arantza Mendioroz

Eric Mazur

and also....

Albert Kim Paul Callan Eli Glezer Li Huang Yakir Siegal Prakriti Tayalia Jason Orcutt

Dr. Peter Grosse (Aachen) Dr. Paul Tangney (Princeton) Prof. Steven Fahy (Cork) Nick Choly (Harvard University) Prof. Tim Kaxiras (Harvard University)

probe wave packet dynamics

nuclear separation

Bowman et al., Chem. Phys. Lett. 161, 297 (1989)

Bowman et al., Chem. Phys. Lett. 161, 297 (1989)

Bowman et al., Chem. Phys. Lett. 161, 297 (1989)

wave packet control

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

wave packet control

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: 2π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: 2π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: 2π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: 3π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

phase delay: 4π

Gerdy et al., Chem. Phys. Lett. 171, 1 (1990)

limited control of chemical reactions demonstrated

can we optically control the state of a solid?

photons excite valence electrons...

...and create free carriers...

... causing electronic and structural changes...

...which we detect with a second laser pulse.

Outline

- experimental
- coherent phonons
- optical control

choice of angles

Fresnel equations cannot be inverted analytically

choice of angles

need numerical inversion

choice of angles

 $R_1 = 45^{\circ} p$ -pol, $R_2 = 45^{\circ} s$ -pol

choice of angles

 $R_1 = 60^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

choice of angles

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

choice of angles

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985)

Experimental

Phys. Rev. Lett. 80, 185 (1998)

Experimental

Experimental

Phys. Rev. Lett. 80, 185 (1998)

can observe dielectric to metallic transition

Outline

- experimental
- coherent phonons
- optical control

tellurium has hexagonal arrangement

helical radius x = 0.27d

A₁ mode modulates x

photoexcitation causes modulation of helical radius

band structure very sensitive to helical radius

15% change drastically alters band structure

should cause a red-shift of dielectric function

Phys. Rev. B 68, 012301 (2003)

Phys. Rev. B 68, 012301 (2003)

data agree well with literature values

Phys. Rev. B 68, 012301 (2003)

now vary pump probe delay

Phys. Rev. B 68, 012301 (2003)

"two-atom model"

bonding-antibonding splitting

Lorentz model

photon promotes electron...

...weakening binding force...

...establishing new equilibrium positions

ions move to new equilibrium positions...

...diminishing splitting...

...and red-shifting the dielectric function

ions overshoot equilibrium position...

...reversing travel and overshooting again

oscillation around "displaced" equilibrium

Tangney and Fahy, Phys. Rev. B 65, 054302 (2002)
ground state equilibrium at x/d = 0.27

equilibrium position shifts upon excitation

band structure depends on lattice configuration

dielectric function reveals band structure changes

track resonance energy

Phys. Rev. B 68, 012301 (2003)

track resonance energy

Phys. Rev. B 68, 012301 (2003)

track resonance energy

track resonance energy

Phys. Rev. B 68, 012301 (2003)

 $\Delta E_{max} \approx 0.3 \text{ eV}$ and so $\Delta x/x \approx 0.05$

Phys. Rev. B 68, 012301 (2003)

Outline

experimental

coherent phonons

optical control

semiclassical model of nuclear motion

nuclear wave packet sits at minimum

laser pulse excites electrons, alters potential

nuclear wave packets on new potential

wave packet oscillates on new potential

excite again at turning point...

...so wave packet lands at minimum in new potential

leaving lattice displaced (without oscillations)

if timing wrong...

...we get oscillations on the new potential

if fluence wrong...

excite to other potential surface...

...and wave packet oscillates

 $F_1 = 0.71 F_{\text{th}}$ $F_2 = 0.43 F_{\text{th}}$ $\tau = 467 \text{ fs}$

 $F_1 = 0.43 F_{\text{th}}$ $F_2 = 0.35 F_{\text{th}}$ $\tau = 127 \text{ fs}$

 $F_1 = 0.43 F_{\text{th}}$ $F_2 = 0.33 F_{\text{th}}$ $\tau = 127 \text{ fs}$

 $F_1 = 0.57 F_{\rm th}$

 $F_1 = 0.57 F_{\text{th}}$ $F_2 = 0.46 F_{\text{th}}$ $\tau = 133 \text{ fs}$

 $F_1 = 0.57 F_{\text{th}}$ $F_2 = 0.46 F_{\text{th}}$ $\tau = 133 \text{ fs}$

...but delay a bit less than half a period

 $F_1 = 0.43 F_{\rm th}$

 $F_1 = 0.43 F_{\text{th}}$ $F_2 = 0.33 F_{\text{th}}$ $\tau = 127 \text{ fs}$

delay again less than half a period

 $F_1 = 0.43 F_{\text{th}}$ $F_2 = 0.33 F_{\text{th}}$ $\tau = 267 \text{ fs}$

delay a bit less than a period

 $F_1 = 0.57 F_{\rm th}$

 $F_1 = 0.57 F_{\text{th}}$ $F_2 = 0.45 F_{\text{th}}$ $\tau = 133 \text{ fs}$

cancellation on first swing

 $F_1 = 0.71 F_{\rm th}$

$F_1 = 0.71 F_{\text{th}}$ $F_2 = 0.34 F_{\text{th}}$ $\tau = 467 \text{ fs}$

cancellation on second swing

two things to note:

second pulse always earlier than expected, and...

two things to note:

... resonance continues to shift after second pulse

excited electrons 'instantaneously' alter potential

but nuclear rearrangement also alters potential

Summary

- can observe dynamics of ultrafast phase transition
- excitation of large-amplitude coherent phonons
- phonons can be controlled optically
- electronic and nuclear configurations affect dynamics

Funding:

National Science Foundation

for a copy of this presentation:

http://mazur-www.harvard.edu