Nonlinear optics at the nanoscale: all-optical logic gates

Julius Springer Forum on Applied Physics Cambridge, MA, 27 September 2008

Geoff Svacha

Rafael Gattass

Tobias Voss

Limin Tong

and also....

Jonathan Aschom Mengyan Shen Iva Maxwell James Carey Brian Tull Dr. Yuan Lu Dr. Richard Schalek Prof. Federico Capasso Prof. Cynthia Friend

Xuewen Chen (Zhejiang) Zhanghua Han (Zhejiang) Dr. Sailing He (Zhejiang) Liu Liu (Zhejiang) Dr. Jingyi Lou (Zhejiang) Dr. Ray Mariella (LLNL) Prof. Frank Marlow (MPI Mühlheim) Prof. Sven Müller (Göttingen) Prof. Carsten Ronning (Göttingen)

supercontinuum generation

optical logic gates

Contraction of the Westmann

Nature, 426, 816 (2003)

20 *µ*m

Poynting vector profile for 200-nm nanowire

minimum bending radius: 5.6 *µ*m

aerogel

420 nm

420 nm

Nanoletters, 5, 259 (2005)

in

out

Nanoletters, 5, 259 (2005)

Nanoletters, 5, 259 (2005)

use tapered fibers to couple light to nanoscale objects

ZnO:non-toxic, wide bandgap semiconductor

vapor transport grown ZnO nanowires

80–400 nm diameter, up to 80 µm long

best of both worlds

ZnO	silica
bottom-up	top-down
semiconductor	glass
active photonic devices	passive waveguides
electrical operation	link to macroworld

Nano Lett., 7, 3675 (2007)

FDTD simulation

ab-initio.mit.edu/wiki/index/Meep

large diameter: multimode

small diameter: single mode

Points to keep in mind:

- low-loss guiding
- convenient evanescent coupling
- attached to ordinary fiber

supercontinuum generation

optical logic gates

strong confinement \longrightarrow high intensity

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

nonlinear parameter

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

dispersion important!

waveguide dispersion

Optics Express, 12, 1025 (2004)

waveguide dispersion

Optics Express, 12, 1025 (2004)

nanowire continuum generation

energy in nanowire < 100 pJ!

- picojoule nonlinear optics
- optimum diameter for silica 500–600 nm
- low dispersion

supercontinuum generation

optical logic gates

Optical logic gates

nanowire Sagnac interferometer

Optical logic gates

nanowire Sagnac interferometer

Optical logic gates

nanowire Sagnac interferometer

nanowire Sagnac interferometer

nanowire Sagnac interferometer

output = transmitted cw + ccw power

input electric field amplitude E_{in}

coupling parameter: ρ

phase accumulation over path length of loop L

coupling parameter: ρ

output is sum of transmitted cw and ccw

accumulated phase:

$$\phi = k_o n$$

accumulated phase:

$$\phi = k_o n$$

nonlinear index:

$$n = n_o + n_2 I = n_o + n_2 \frac{P_i}{A_{eff}}$$

accumulated phase:

$$\phi = k_o n$$

nonlinear index:

$$n = n_o + n_2 I = n_o + n_2 \frac{P_i}{A_{eff}}$$

nonlinear parameter:

$$\gamma = n_2 \frac{k_o}{A_{eff}}$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

for 50-50 coupler:

$$\rho = 0.5$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

for 50-50 coupler:

$$\rho = 0.5$$

no transmission:

$$\frac{E_{out}^2}{E_{in}^2} = 0$$

when $\rho \neq 0.5$:

for NAND gate need ouput with no input

for NAND gate need ouput with no input

for NAND gate need ouput with no input

universal NAND gate

universal NAND gate

universal NAND gate

mesoporous silica

Sagnac loop

output

mesoporous silica

Sagnac loop

very preliminary data

light-by-light modulation!

very preliminary data

very preliminary data

- several nanodevices demonstrated
- large γ permits miniature Sagnac loops
- switching energy < 10 pJ

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur-www.harvard.edu

Google Search	I'm Feeling Lucky

mazur			

	Contraction of the second
Google Search	I'm Feeling Lucky

mazur		

-		
mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur-www.harvard.edu