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Combining femtosecond pump–probe techniques with optical microscopy, we have studied laser-induced

optical breakdown in optically transparent solids with high temporal and spatial resolution. The threshold of

plasma formation has been determined from measurements of the changes of the optical reflectivity associated

with the developing plasma. It is shown that plasma generation occurs at the surface. We have observed

a remarkable resistance to optical breakdown and material damage in the interaction of femtosecond laser
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1. INTRODUCTION

The interaction of intense femtosecond laser pulses with

solids offers the possibility of producing a new class of

plasmas having approximately solid-state density and

spatial density scale lengths much smaller than the wave-

length of light. These high-density plasmas with ex-

tremely sharp density gradients are currently of great

interest, particularly from the point of view of generat-

ing bright, ultrashort x-ray pulses. To produce such a

plasma, the laser pulse should rise from the intensity level

corresponding to the threshold of plasma formation to the

peak value in a time much shorter than the time scale

of plasma expansion. Thus the specification of the tol-

erable intensity background or of the acceptable amount

of prepulse of the laser pulse requires some knowledge of

threshold of plasma formation of the target material.

The transformation of solid material into a dense

plasma is also interesting from a fundamental physics

point of view. Electric breakdown of dielectrics, that is,

rapid ionization and formation of a plasma when the ma-

terial is exposed to electric fields exceeding some critical

value, is a rather general phenomenon. It has been in-

vestigated for a wide variety of different situations rang-

ing from static fields1 to very-high-frequency laser fields.2

In the mid-seventies Bloembergen and co-workers studied

laser-induced breakdown of alkali halides and some other

dielectric materials by using nanosecond and picosecond

laser pulses.3 They came to the conclusion that the phys-

ical mechanism responsible for the intrinsic optical bulk

breakdown of these materials is avalanche ionization, the

same as for static-electrical breakdown.

The variation of the breakdown threshold as a func-

tion of laser pulse duration has also been studied,4 and

the observations were found to be in agreement with

the avalanche ionization model. A breakdown threshold

field of 107 Vcm was measured for the shortest pulses

in these experiments, which were 10 ps in duration.

A simple extrapolation to the femtosecond regime would

predict breakdown fields in excess of 108 Vcm, which is

the order of magnitude at which tunneling ionization is

important, as already pointed out by Bloembergen.3

One of the key points in the research of Bloembergen

and his co-workers was the use of very tightly focused

laser beams, which allowed them to reach the breakdown

threshold of the materials while staying well below the

critical power of self-focusing. Self-focusing is one of the

major problems in the measurement of bulk breakdown

thresholds. In a more recent review Soileau et al.5 care-

fully examined the role of self-focusing in experiments

measuring laser-induced breakdown of bulk dielectric ma-

terials. They concluded that the breakdown and dam-

age thresholds are also strongly influenced by extrinsic

effects.

Thus far, the issue of breakdown thresholds in fem-

tosecond laser–solid interaction has barely been touched.

Very recently, Du et al.6 carried out laser-induced break-

down experiments on fused silica with pulses ranging in

duration from 7 ns to as low as 150 fs. They reported

an interesting dependence of the fluence threshold on

pulse duration, particularly a pronounced increase of the

threshold with decreasing pulse duration below 10 ps.

These observations were interpreted in terms of the bulk

avalanche ionization model. In related research, Stuart

et al.7 studied the pulse-width dependence of the thresh-

old of surface damage for a wide range of materials and

pulse durations. They observed only some weak varia-

tion of the damage threshold below 10 ps.

At the present time, laser-induced breakdown in the

femtosecond time regime and the accompanying material

damage processes are far from well understood. The key

issues that have to be addressed are the roles of the var-

ious possible ionization mechanisms, such as avalanche,

multiphoton, and tunneling processes, and the clarifica-

tion of surface and bulk breakdown processes. For bulk

breakdown processes the influence of self-focusing and/or

self-defocusing is likely to present an even more difficult

problem for ultrashort, femtosecond laser pulses than in

the previous research with longer pulses.

In this paper we describe measurements of the thresh-

old of plasma formation that were made when an in-

tense 120-fs laser pulse was focused on the surface of

optically transparent materials. An active pump–probe

technique, described in Section 2, was used to monitor the

0740-3224/96/010216-07$06.00
 1996 Optical Society of America
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“… clear evidence that no bulk plasmas…

[and] … no bulk damage could be produced

with femtosecond laser pulses”
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focus laser beam inside material

Opt. Lett. 21, 2023 (1996)
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photon energy < bandgap             nonlinear interaction
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nonlinear interaction provides bulk confinement
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nonlinear interaction provides bulk confinement

linear
absorption

nonlinear
absorption



Femtosecond micromachining

 

Some applications: 

• data storage

• waveguides

• microfluidics
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Femtosecond micromachining

Dark-field scattering

sample
objective



Femtosecond micromachining

block probe beam…

sample

detector

objective
probe



Femtosecond micromachining

… bring in pump beam…

sample

detector

objective

pump

probe



Femtosecond micromachining

… damage scatters probe beam

sample

detector

objective

pump

probe
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Femtosecond micromachining
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Femtosecond micromachining
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Femtosecond micromachining

scattered signal

time (µs)

fused silica
1.0 µJ

si
gn

al
 (

a.
u.

)

thermal
transient

–0.2 0 0.2 0.4 0.6 0.8

3

2

1

0



Femtosecond micromachining

vary numerical aperture
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Femtosecond micromachining
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Femtosecond micromachining

fit gives threshold intensity: Ith = 2.5 x 1017 W/m2
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Femtosecond micromachining

vary material…
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Femtosecond micromachining

…threshold varies with band gap (but not much!)
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Femtosecond micromachining

what prevents damage at low NA?



Femtosecond micromachining

Competing nonlinear effects:

• multiphoton absorption

• supercontinuum generation

• self-focusing



Femtosecond micromachining

why the difference?

low NAhigh NA



Femtosecond micromachining

very different confocal length/interaction length

low NAhigh NA



Femtosecond micromachining

high NA: interaction length too short for self-focusing



Femtosecond micromachining
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Femtosecond micromachining
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Femtosecond micromachining

Points to keep in mind:

• threshold critically dependent on NA

• surprisingly little material dependence

• avalanche ionization important
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• femtosecond micromachining
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• applications



Low-energy machining
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Low-energy machining

less than 10 nJ at high numerical aperture!
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Low-energy machining

amplified laser: 1 kHz, 1 mJ

100 fs
1 ms

heat diffusion time:   tdiff ≈ 1 µs



Low-energy machining

long cavity oscillator: 25 MHz, 25 nJ

30 fs
40 ns

heat diffusion time:   tdiff ≈ 1 µs



Low-energy machining

50 µm



Low-energy machining

High repetition-rate micromachining:

• structural changes exceed focal volume

• spherical structures

• density change caused by melting



Low-energy machining

40 ns1 ms

amplified laser oscillator

repetitive cumulative



Low-energy machining

amplified laser oscillator

repetitive cumulative



Low-energy machining

the longer the irradiation…

102

50 µm



Low-energy machining

the longer the irradiation…
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Low-energy machining

the longer the irradiation…
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Low-energy machining

the longer the irradiation…

… the larger the radius
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Low-energy machining
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Low-energy machining

at high-rep rate: internal “point-source of heat”
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• femtosecond micromachining

• low-energy machining

• applications



Low-energy machining

waveguide micromachining

Opt. Lett. 26, 93 (2001)



Low-energy machining

waveguide micromachining

Opt. Lett. 26, 93 (2001)
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curved waveguides
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curved waveguides
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curved waveguides
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curved waveguides
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curved waveguides

 



Applications

photonic fabrication techniques

 fs micromachining other

loss (dB/cm) < 3 0.1–3

bending radius 36 mm 30–40 mm

Dn 2 x 10–3 10–4 – 0.5

3D integration Y N

 



Applications

photonic devices
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Applications

all-optical sensor

 

substrate

Appl. Phys. Lett. 87, 051106 (2005)
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all-optical sensor

 

substrate

Appl. Phys. Lett. 87, 051106 (2005)
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all-optical sensor

 

substratesuspended beam

Appl. Phys. Lett. 87, 051106 (2005)
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all-optical sensor

 

substratesuspended beam
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all-optical sensor
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all-optical sensor
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all-optical sensor
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all-optical sensor
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Applications

sensor gap

 

20 µm
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sensor response to 100 Hz acoustic wave
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Applications

ideal tool for ablating (living) tissue

 



Applications

• standard biochemical tools: species selective

• fs laser “nanosurgery”: site specific

 



Applications

Q: can we probe the dynamics of the cytoskeleton?



Applications

actin fiber network of a live cell

10 µm



Applications

cut a single fiber bundle

10 µm



Applications

cut a single fiber bundle

10 µm



Applications

gap widens with time

t = 10 s10 µm



Applications

dynamics provides information on in vivo mechanics

10 µm



Summary
 

great tool for

• “wiring light”

• micromanipulating the machinery of life



Summary
 

 
• important parameters: focusing, energy, repetition rate

• nearly material independent

• two regimes: low and high repetition rate

• high-repetition rate (thermal) machining fast, convenient
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• important parameters: focusing, energy, repetition rate

• nearly material independent
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irradiate with 100-fs 10 kJ/m2 pulses

SF6

Si
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“black silicon”
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3 µm
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Introduction

multiple reflections enhance absorption
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multiple reflections enhance absorption
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Introduction

electronic band structure changes
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band structure changes: defects and/or impurities



Outline

• high photon flux doping

• photoelectron generation

• photoconductive gain



High photon flux doping

microstructure with different gases
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High photon flux doping

microstructure with different gases
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High photon flux doping

microstructure with different gases
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High photon flux doping

microstructure with different gases
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High photon flux doping

microstructure with different gases
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High photon flux doping

microstructure with different gases
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sulfur required for below band gap absorption



High photon flux doping

other chalcogens yield similar results
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High photon flux doping

10 µm



High photon flux doping
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High photon flux doping
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High photon flux doping

cross-sectional 
Transmission Electron 

Microscopy



High photon flux doping

M. Wall, F. Génin (LLNL)

1 µm



High photon flux doping

disordered
surface layer
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High photon flux doping

crystalline
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High photon flux doping

electron
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High photon flux doping

1 µm



High photon flux doping

1 µm

 
 

• 300-nm disordered surface layer

• undisturbed crystalline core

• surface layer: nanocrystalline Si with 1.6% sulfur



High photon flux doping

1 part in 106 sulfur introduces states in gap
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High photon flux doping

at high concentration states broaden into band
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High photon flux doping

absorption extends into infrared
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High photon flux doping

donor or acceptor states, depending on Fermi level
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High photon flux doping
 
 

Things to keep in mind

• new chemical structure and electronic properties

• nanocrystallinity: quantum confinement effects

• absorption happens in nanocrystalline layer



Outline

• high photon flux doping

• photoelectron generation

• photoconductive gain



Photoelectron generation

join acceptor and donor type Si…



Photoelectron generation

non-conducting layer at junction



Photoelectron generation

black silicon/silicon junction

Si substrate
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Photoelectron generation

black silicon/silicon junction

Si substrate

Cr/Au contacts



Photoelectron generation

black silicon/silicon junction

Si substrate

Cr/Au contacts
~ 400 nm

260 µm

100 nm

4 mm

3 mm



Photoelectron generation

IV characteristics
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Photoelectron generation

depletion layer can convert light into electric energy



Photoelectron generation

incident photon knocks out electron…



Photoelectron generation

…creating an electron-hole pair



Photoelectron generation

E-field separates eh-pair, causing current



Photoelectron generation
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Photoelectron generation

IV characteristics
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Photoelectron generation

responsivity
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Photoelectron generation
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Photoelectron generation
 
 

Things to keep in mind

• can turn absorption into photoelectrons

• very high responsivity in VIS and IR

• quantum efficiency larger than one



Outline

• high photon flux doping

• photoelectron generation

• photoconductive gain



Photoconductive gain

apply electric field…
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Photoconductive gain

…and so depletion zone expands



Photoconductive gain
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Photoconductive gain

hole is trapped, electron accelerates…
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Photoconductive gain

…exits sample…
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Photoconductive gain

…and source supplies a new electron
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Photoconductive gain

…and source supplies a new electron
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Photoconductive gain

responsivity at zero bias
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Photoconductive gain

doubled quantum efficiency around 1.1 µm
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Photoconductive gain
 
 

Things to keep in mind

• photoconductive gain at room temperature!

• significant promise as photovoltaic material



Photoconductive gain
 
 

http://www.sionyxinc.com



Photoconductive gain
 
 

• low-voltage, high-responsivity detectors

• silicon-based IR detectors

• higher QE photovoltaic cells

http://www.sionyxinc.com



Summary
 

 

high photon flux doping produces new class of material
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Outline

• manipulating light at the nanoscale

• supercontinuum generation

• optical logic gates



Manipulating light at the nanoscale

Nature, 426, 816 (2003)



Manipulating light at the nanoscale

100 µm



Manipulating light at the nanoscale

50 µm

d = 260 nm
L = 4 mm



Manipulating light at the nanoscale

2 µm



Manipulating light at the nanoscale

20 µm



Manipulating light at the nanoscale



Manipulating light at the nanoscale

Poynting vector profile for 200-nm nanowire



Manipulating light at the nanoscale

50 µm



Manipulating light at the nanoscale
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Manipulating light at the nanoscale



Manipulating light at the nanoscale

100 µm



Manipulating light at the nanoscale

100 µm



Manipulating light at the nanoscale

100 µm

minimum bending
radius: 5.6 µm



Manipulating light at the nanoscale

420 nm
420 nm

aerogel

Nanoletters, 5, 259 (2005)



Manipulating light at the nanoscale

in

out out

Nanoletters, 5, 259 (2005)



Manipulating light at the nanoscale

5 µm

Nanoletters, 5, 259 (2005)



Manipulating light at the nanoscale

use tapered fibers to couple light to nanoscale objects



Manipulating light at the nanoscale

ZnO:non-toxic, wide bandgap semiconductor



Manipulating light at the nanoscale

vapor transport grown ZnO nanowires

80–400 nm diameter, up to 80 µm long

20 µm



Manipulating light at the nanoscale

 best of both worlds

 ZnO silica

 bottom-up top-down

 semiconductor glass

 active photonic devices passive waveguides

 electrical operation link to macroworld



Manipulating light at the nanoscale

coupling to ZnO nanowires
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Manipulating light at the nanoscale

20 µm



Manipulating light at the nanoscale
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Manipulating light at the nanoscale

20 µm



Manipulating light at the nanoscale

1 µm

Nano Lett., 7, 3675 (2007)



Manipulating light at the nanoscale

1 µm

16

5d

FDTD simulation

ab-initio.mit.edu/wiki/index/Meep



Manipulating light at the nanoscale

20 µmNano Lett., 7, 3675 (2007)



Manipulating light at the nanoscale

20 µmNano Lett., 7, 3675 (2007)



Manipulating light at the nanoscale

20 µmNano Lett., 7, 3675 (2007)



Manipulating light at the nanoscale

Nano Lett., 7, 3675 (2007)



Manipulating light at the nanoscale

large diameter:
multimode

Nano Lett., 7, 3675 (2007)



Manipulating light at the nanoscale

small diameter:
single mode

Nano Lett., 7, 3675 (2007)



Manipulating light at the nanoscale

Points to keep in mind:

• low-loss guiding

• convenient evanescent coupling

• attached to ordinary fiber



Outline

• manipulating light at the nanoscale

• supercontinuum generation

• optical logic gates



Supercontinuum generation

nonlinear dispersion:   n = no + n2I



Supercontinuum generation

nonlinear dispersion:   n = no + n2I



Supercontinuum generation

nonlinear dispersion:   n = no + n2I



Supercontinuum generation

nonlinear dispersion:   n = no + n2I



Supercontinuum generation

nonlinear dispersion:   n = no + n2I



Supercontinuum generation

strong confinement               high intensity
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Supercontinuum generation

mode field diameter (l = 800 nm)
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Supercontinuum generation

nonlinear parameter
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Supercontinuum generation

dispersion important!



Supercontinuum generation

waveguide dispersion
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Supercontinuum generation

waveguide dispersion
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Supercontinuum generation

nanowire continuum generation
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Supercontinuum generation

nanowire continuum generation
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Supercontinuum generation

nanowire continuum generation
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Supercontinuum generation

nanowire continuum generation
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Supercontinuum generation

nanowire continuum generation
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Supercontinuum generation

nanowire continuum generation
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Supercontinuum generation

nanowire continuum generation
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Supercontinuum generation

energy in nanowire < 100 pJ!



Supercontinuum generation
 

 

• picojoule nonlinear optics

• optimum diameter for silica 500–600 nm

• low dispersion
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• manipulating light at the nanoscale

• supercontinuum generation

• optical logic gates



Optical logic gates

nanowire Sagnac interferometer
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Optical logic gates

nanowire Sagnac interferometer
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Optical logic gates

nanowire Sagnac interferometer

 coupling
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Optical logic gates

output = transmitted cw + ccw power

 coupling
region

 cw  ccw

 transmitted



Optical logic gates

input electric field amplitude Ein 

 coupling
region

 input

      

   



Optical logic gates

coupling parameter: r
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Optical logic gates

phase accumulation over path length of loop L     

 12

 12
 

 

 input

      

 cw



Optical logic gates

coupling parameter: r
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Optical logic gates

output is sum of transmitted cw and ccw  
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Manipulating light at the nanoscale

accumulated phase:

  nko
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Manipulating light at the nanoscale

accumulated phase:

nonlinear index:

nonlinear parameter:
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Manipulating light at the nanoscale

power-dependent output:

E2
out

Ein
2  1  2r(1  r){1  cos[(1  2r)gPoL] }



Manipulating light at the nanoscale

power-dependent output:

for 50-50 coupler:

E2
out

Ein
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r  0.5



Manipulating light at the nanoscale

power-dependent output:

for 50-50 coupler:

no transmission:
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Optical logic gates

when r ≠ 0.5:

input power (W)

ou
tp

ut
 p

ow
er

 (W
)

0 20 40 60 80

40

30

20

10

0



Optical logic gates
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Optical logic gates
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Optical logic gates
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Optical logic gates
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Optical logic gates

nonlinear nanogate
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Optical logic gates

nonlinear nanogate
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Optical logic gates

nonlinear nanogate
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Optical logic gates

nonlinear nanogate
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Optical logic gates

nonlinear nanogate
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Optical logic gates

nonlinear nanogate
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Optical logic gates

for NAND gate need ouput with no input
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Optical logic gates

for NAND gate need ouput with no input
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Optical logic gates

for NAND gate need ouput with no input
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Optical logic gates

universal NAND gate
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Optical logic gates

universal NAND gate
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Optical logic gates

universal NAND gate
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Optical logic gates

Sagnac
loop

mesoporous silica



Optical logic gates
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Optical logic gates

very preliminary data
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Optical logic gates

light-by-light modulation!



Optical logic gates

very preliminary data
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Optical logic gates

very preliminary data
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Summary
 

 

• several nanodevices demonstrated

• large g permits miniature Sagnac loops

• switching energy < 10 pJ
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