Turning lectures into learning

The magnine of the force on the most a the instant the much is containing with

10014

2

5014

3

2

04

De

2010

5

the caris.

2009 ConnectEd Summit Abilene, TX, 27 February 2009

Introduction

Introduction

lectures focus on delivery of information

Introduction

lectures focus on delivery of information

but education is more than information transfer

Outline

.10

Outline

Peer Instruction

• Let's try it!

• Results

move information transfer out of classroom

assign readingteach by questioning

brief lecture

Outline

Peer Instruction

Let's try it!

Resul

Consider a rectangular metal plate with a circular hole in it.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

- 1. increases.
- 2. stays the same.
- 3. decreases.

Imagine a rope that fits snugly along the equator.

Imagine a rope that fits snugly along the equator.

Suppose the rope is cut and 1 m of rope is inserted between the cut ends. If the rope were to maintain a circular shape, how far off the surface of the Earth would it float?

- 1. the width of a few atoms
- 2. the width of a few hairs
- 3. the height of a curb
- 4. exactly 1 m
- 5. more than 1 m

circumference at equator:

 $2\pi R_{\rm E}$

circumference at equator:

 $2\pi R_{\rm E}$

new circumference:

 $2\pi R_{\rm E} + 1 \,{\rm m}$

circumference at equator:

 $2\pi R_{\rm E}$

new circumference:

 $2\pi R_{\rm E} + 1 \,{\rm m}$

radius of circle with new circumference:

 $2\pi R = 2\pi R_{\rm E} + 1 \,{\rm m}, \text{ and so } R = R_{\rm E} + \frac{1 \,{\rm m}}{2\pi}.$

It's easy to fire up the audience!

Outline

traditional instruction

traditional instruction

traditional instruction

first year of implementing PI

first year of implementing PI

first year of implementing PI

what about problem solving?

better understanding leads to better problem solving

Conclusion

active engagement greatly improves learning gains

Conclusion

active engagement greatly improves learning gains

technology facilitates active engagement

Research Funding:

Pew Charitable Trust Pearson/Prentice Hall Davis Foundation Engineering Information Foundation Derek Bok Center for Teaching and Learning National Science Foundation

for a copy of this presentation:

http://mazur-www.harvard.edu

for more information on response ware:

http://www.turningtechnologies.com