Femtosecond laser doping of silicon beyond the equilibrium limit

Mark Winkler, Meng Ju Sher, Eric Mazur Photonics West 2009

Understanding non-equilibrium doping:

Understanding non-equilibrium doping:

• Laser doping – how we do it and what we know

Understanding non-equilibrium doping:

- Laser doping how we do it and what we know
- Non-equilibrium dopant concentrations

Understanding non-equilibrium doping:

- Laser doping how we do it and what we know
- Non-equilibrium dopant concentrations
- Hall measurements determining dopant energetics

femtosecond laser doped silicon

$$\overline{A} = \frac{1 - R - T}{1 - R}$$

$$\overline{A} = \frac{1 - R - T}{1 - R}$$

$$\overline{A} = \frac{1 - R - T}{1 - R}$$

Janzén et al., Phys. Rev. B 29, 1907 (1984)

Hypothesis: non-equilibrium doping yields impurity band

epoxy (used for sample preparation)

laser affected region

substrate

10 nm

epoxy (used for sample preparation)

laser affected region

substrate

Isolate surface properties

device layer

buried oxide

silicon substrate

Isolate surface properties

device layer buried oxide

silicon substrate

Isolate surface properties

buried oxide silicon substrate

Dopant levels from Hall measurements

Dopant levels from Hall measurements

Dopant levels from Hall measurements

Dopant levels from Hall measurements

Dopant levels from Hall measurements

PRELIMINARY RESULTS

Dopant levels from Hall measurements

PRELIMINARY RESULTS

Dopant levels from Hall measurements

PRELIMINARY RESULTS

Janzén et al., Phys. Rev. B 29, 1907 (1984)

Preliminary conclusion: S takes substitutional site

Conclusions

Conclusions

Laser doping dramatically alters optical properties

Conclusions

Laser doping dramatically alters optical properties

Conclusions

Laser doping dramatically alters optical properties

Dopants exceed equilibrium concentrations

Conclusions

Laser doping dramatically alters optical properties

Dopants exceed equilibrium concentrations

Better knowledge of electronic structure will enable incorporation into devices

Acknowledgements

Eric Diebold, Albert Zhang, Jim Carey, Brian Tull Mike Aziz, Brion Bob

the Mazur Group

Funding: NSF, ARO

Thanks! Questions?

winkler@physics.harvard.edu

http://mazur-www.harvard.edu

END OF TALK

laser doping structural clues new directions 2<u>0 um</u>

 Δ

Ο

 \Diamond

structural clues

new directions

- 10 min
- 30 min
- 100 min
- □ 6 hr
- 🗌 24 hr

diffusion length = $\sqrt{D_i t} = f(T, t)$

structural clues

Conclusion: diffusion is the dominant mechanism involved in deactivation of optical response

structural clues new directions

structural clues new directions

structural clues

structural clues

structural clues

structural clues

structural clues

laser doping

structural clues new directions

laser doping

structural clues

new directions

laser doping

structural clues

new directions

Laser-doping extends silicon's reach

Laser-doping extends silicon's reach

 $s^{o} s^{*} s_{2}^{o} s_{2}^{*} s_{2}^{o} s_{2}^{*} s_{c}^{o}(x_{1}) s_{c}^{o}(x_{2}) s_{c}^{o}(x_{3}) s_{c}^{*}(x_{1})$

FIG. 1. Sulfur-related centers in silicon. $S_c^+(X_1)$, $S_c^0(X_2)$, and $S_c^0(X_3)$ are sulfur-related complexes not observed previously (see also, however, Refs. 29 and 30). The binding energies of all centers are taken from this paper and are similar to those found in the literature (Refs. 8, 15, 22, 23, 25, 30, 31, and 37-44).