Extending silicon's reach: non-equilibrium doping of silicon

Mark Winkler Jones seminar 2009.02.13

 $\dot{Q}_{emit} = \dot{Q}_{sun}$

$$T_A = c_0^{\frac{1}{4}} T_S$$

impurity band cell

impurity band cell

impurity band cell

Green M, Prog. Photovolt 2007 15 425

Why extend silicon's reach?

Understanding a material that extends silicon's reach:

Understanding a material that extends silicon's reach:

• What we know about laser doping of silicon

Understanding a material that extends silicon's reach:

- What we know about laser doping of silicon
- Structural role of dopants in infrared absorptance
Understanding a material that extends silicon's reach:

- What we know about laser doping of silicon
- Structural role of dopants in infrared absorptance
- New developments and directions

femtosecond laser doped silicon

$$\overline{A} = \frac{1 - R - T}{1 - R}$$

epoxy (used for sample preparation)

laser affected region

substrate

structural clues new directions

structural clues new directions

structural clues

structural clues

structural clues

structural clues

structural clues

structural clues new directions

structural clues

Laser-doping extends silicon's reach

Laser-doping extends silicon's reach

Hypothesis: non-equilibrium doping yields impurity band

 Δ

Ο

 \Diamond

structural clues

new directions

- 10 min
- 30 min
- 100 min
- □ 6 hr
- 🗌 24 hr

diffusion length = $\sqrt{D_i t} = f(T, t)$

structural clues

Could this diffusion-related drop in absorptance be governed by grain size?

Could this diffusion-related drop in absorptance be governed by grain size?

Could this diffusion-related drop in absorptance be governed by grain size?

Could this diffusion-related drop in absorptance be governed by grain size?

Could this diffusion-related drop in absorptance be governed by grain size?

laser doping structural clues new directions

Conclusion: diffusion is a critical mechanism involved in deactivation of optical response

epoxy (used for sample preparation)

laser affected region

substrate

Isolate surface properties

device layer

buried oxide

silicon substrate

Isolate surface properties

device layer buried oxide

silicon substrate

Isolate surface properties

buried oxide silicon substrate

structural clues

new directions

Dopant levels from Hall measurements

20

Dopant levels from Hall measurements

Temperature (K)

100

N/P 5000 Ω-cm

50

500

100

200

Dopant levels from Hall measurements

Dopant levels from Hall measurements

Dopant levels from Hall measurements

Dopant levels from Hall measurements

PRELIMINARY RESULTS

Dopant levels from Hall measurements

PRELIMINARY RESULTS

Janzén et al., Phys. Rev. B 29, 1907 (1984)

Preliminary data suggests: S takes substitutional site

Synchrotron Facilities

National Synchrotron Light Source, Brookhaven, NY

Buonassisi Group IIIi

Laboratory for Photovoltaic Research

X-ray absorption Spectroscopy: XAS

1.incoming x-ray (changes in energy)

X-ray absorption Spectroscopy: XAS

1.incoming x-ray (changes in energy)

X-ray absorption Spectroscopy: XAS

1.incoming x-ray (changes in energy)

neighboring atom

П

new directions

Tracking Se Impurity Chemical State

structural clues

new directions

Conclusions

structural clues

new directions

Conclusions

We need to extend silicon's reach

structural clues

new directions

Conclusions

We need to extend silicon's reach

structural clues

new directions

Conclusions

We need to extend silicon's reach

Dopants diffusion governs IR response

structural clues

new directions

Conclusions

We need to extend silicon's reach

Dopants diffusion governs IR response

On our way to solving the puzzle!
laser dopingstructural cluesnew directionsAcknowledgements

Meng-ju Sher, Eric Diebold, Albert Zhang, Jim Carey, Brian Tull, Mike Aziz, Brion Bob

the Mazur Group

Funding: NSF GFRP, ARO

Thanks! Questions?

winkler@physics.harvard.edu

http://mazur-www.harvard.edu

END OF TALK

Why extend silicon's reach?

Why extend silicon's reach?

