Extending silicon's reach: non-equilibrium doping of silicon

Mark Winkler UML colloquium 2008.10.22

Why extend silicon's reach?

Why extend silicon's reach?

• What we know about laser doping of silicon

- What we know about laser doping of silicon
- Structural role of dopants in infrared absorptance

- What we know about laser doping of silicon
- Structural role of dopants in infrared absorptance
- New developments and directions

femtosecond laser doped silicon

structural clues new directions

structural clues new directions

structural clues

structural clues

structural clues

structural clues

structural clues

structural clues new directions

structural clues

structural clues

Laser-doping extends silicon's reach

Laser-doping extends silicon's reach

Hypothesis: non-equilibrium doping yields impurity band

laser doping structural clues new directions 2<u>0 um</u>

laser doping structural clues ne

new directions

Rough surfaces -----> Hard to characterize

 Δ

Ο

 \Diamond

structural clues

new directions

- 10 min
- 30 min
- 100 min
- □ 6 hr
- 🗌 24 hr

diffusion length = $\sqrt{D_i t} = f(T, t)$

structural clues

Conclusion: diffusion is the dominant mechanism involved in deactivation of optical response

laser doping structural clues new directions

Rough surfaces ------ Hard to characterize

structural clues

structural clues

new directions

2 µm

EHT = 10.00 kV WD = 18.8 mm

Signal A = SE2 Photo No. = 5089

Date :24 Jan 2008 Time :8:54:17

77 DI N N

epoxy (used for sample preparation)

laser affected region

substrate

new directions

10 nm

Normalized Absorptance

New characterization techniques

secondary ion mass spectroscopy (SIMS)

New characterization techniques

secondary ion mass spectroscopy (SIMS)

epoxy (used for sample preparation)

laser affected region

substrate

Possible to measure optical constants chemical makeup carrier dynamics

Isolate surface properties

device layer

buried oxide

silicon substrate

Isolate surface properties

device layer buried oxide

silicon substrate

Isolate surface properties

buried oxide silicon substrate

structural clues

Dopant levels from Hall measurements

Dopant levels from Hall measurements

Dopant levels from Hall measurements

structural clues

new directions

Conclusions

structural clues

new directions

Conclusions

We need to extend silicon's reach

structural clues

new directions

Conclusions

We need to extend silicon's reach

structural clues

new directions

Conclusions

We need to extend silicon's reach

Dopants diffusion governs IR response

structural clues

new directions

Conclusions

We need to extend silicon's reach

Dopants diffusion governs IR response

On our way to solving the puzzle!

Iaser dopingstructural cluesnew directionsAcknowledgementsEric Diebold, Albert Zhang, Jim Carey, Brian Tull

the Mazur Group

Mike Aziz, Brion Bob

National Science Foundation Army Research Office

Thanks! Questions?

winkler@physics.harvard.edu

http://mazur-www.harvard.edu

END OF TALK

Why extend silicon's reach?

Why extend silicon's reach?

Engineering silicon?

- a graph showing 1st order calculation of silicon's maximum efficiency
- perhaps a picture of standard silicon cell and a black silicon on glass slide (could show again at the end of the background section)

After writing this talk, i think the following figures would be useful

I) a graphical representation of how we make the flat surface