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Introduction

why study materials with femtosecond pulses?
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photon energy < bandgap             nonlinear interaction           
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Combining femtosecond pump–probe techniques with optical microscopy, we have studied laser-induced

optical breakdown in optically transparent solids with high temporal and spatial resolution. The threshold of

plasma formation has been determined from measurements of the changes of the optical reflectivity associated

with the developing plasma. It is shown that plasma generation occurs at the surface. We have observed

a remarkable resistance to optical breakdown and material damage in the interaction of femtosecond laser

pulses with bulk optical materials.  1996 Optical Society of America

1. INTRODUCTION

The interaction of intense femtosecond laser pulses with

solids offers the possibility of producing a new class of

plasmas having approximately solid-state density and

spatial density scale lengths much smaller than the wave-

length of light. These high-density plasmas with ex-

tremely sharp density gradients are currently of great

interest, particularly from the point of view of generat-

ing bright, ultrashort x-ray pulses. To produce such a

plasma, the laser pulse should rise from the intensity level

corresponding to the threshold of plasma formation to the

peak value in a time much shorter than the time scale

of plasma expansion. Thus the specification of the tol-

erable intensity background or of the acceptable amount

of prepulse of the laser pulse requires some knowledge of

threshold of plasma formation of the target material.

The transformation of solid material into a dense

plasma is also interesting from a fundamental physics

point of view. Electric breakdown of dielectrics, that is,

rapid ionization and formation of a plasma when the ma-

terial is exposed to electric fields exceeding some critical

value, is a rather general phenomenon. It has been in-

vestigated for a wide variety of different situations rang-

ing from static fields1 to very-high-frequency laser fields.2

In the mid-seventies Bloembergen and co-workers studied

laser-induced breakdown of alkali halides and some other

dielectric materials by using nanosecond and picosecond

laser pulses.3 They came to the conclusion that the phys-

ical mechanism responsible for the intrinsic optical bulk

breakdown of these materials is avalanche ionization, the

same as for static-electrical breakdown.

The variation of the breakdown threshold as a func-

tion of laser pulse duration has also been studied,4 and

the observations were found to be in agreement with

the avalanche ionization model. A breakdown threshold

field of 107 Vcm was measured for the shortest pulses

in these experiments, which were 10 ps in duration.

A simple extrapolation to the femtosecond regime would

predict breakdown fields in excess of 108 Vcm, which is

the order of magnitude at which tunneling ionization is

important, as already pointed out by Bloembergen.3

One of the key points in the research of Bloembergen

and his co-workers was the use of very tightly focused

laser beams, which allowed them to reach the breakdown

threshold of the materials while staying well below the

critical power of self-focusing. Self-focusing is one of the

major problems in the measurement of bulk breakdown

thresholds. In a more recent review Soileau et al.5 care-

fully examined the role of self-focusing in experiments

measuring laser-induced breakdown of bulk dielectric ma-

terials. They concluded that the breakdown and dam-

age thresholds are also strongly influenced by extrinsic

effects.

Thus far, the issue of breakdown thresholds in fem-

tosecond laser–solid interaction has barely been touched.

Very recently, Du et al.6 carried out laser-induced break-

down experiments on fused silica with pulses ranging in

duration from 7 ns to as low as 150 fs. They reported

an interesting dependence of the fluence threshold on

pulse duration, particularly a pronounced increase of the

threshold with decreasing pulse duration below 10 ps.

These observations were interpreted in terms of the bulk

avalanche ionization model. In related research, Stuart

et al.7 studied the pulse-width dependence of the thresh-

old of surface damage for a wide range of materials and

pulse durations. They observed only some weak varia-

tion of the damage threshold below 10 ps.

At the present time, laser-induced breakdown in the

femtosecond time regime and the accompanying material

damage processes are far from well understood. The key

issues that have to be addressed are the roles of the var-

ious possible ionization mechanisms, such as avalanche,

multiphoton, and tunneling processes, and the clarifica-

tion of surface and bulk breakdown processes. For bulk

breakdown processes the influence of self-focusing and/or

self-defocusing is likely to present an even more difficult

problem for ultrashort, femtosecond laser pulses than in

the previous research with longer pulses.

In this paper we describe measurements of the thresh-

old of plasma formation that were made when an in-

tense 120-fs laser pulse was focused on the surface of

optically transparent materials. An active pump–probe

technique, described in Section 2, was used to monitor the

0740-3224/96/010216-07$06.00
 1996 Optical Society of America
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One of the key points in the research of Bloembergen

and his co-workers was the use of very tightly focused

laser beams, which allowed them to reach the breakdown

“… clear evidence that no bulk plasmas…

[and] … no bulk damage could be produced

with femtosecond laser pulses”
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tremely sharp density gradients are currently of great

interest, particularly from the point of view of generat-

ing bright, ultrashort x-ray pulses. To produce such a

plasma, the laser pulse should rise from the intensity level

corresponding to the threshold of plasma formation to the

peak value in a time much shorter than the time scale

of plasma expansion. Thus the specification of the tol-

erable intensity background or of the acceptable amount

of prepulse of the laser pulse requires some knowledge of
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Femtosecond micromachining

 

Some applications: 

• data storage

• waveguides

• microfluidics



Outline

• femtosecond micromachining

• low-energy machining

• applications



Femtosecond micromachining

Dark-field scattering
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Femtosecond micromachining

block probe beam…
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Femtosecond micromachining

… bring in pump beam…
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Femtosecond micromachining
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Femtosecond micromachining
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Femtosecond micromachining
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Femtosecond micromachining

fit gives threshold intensity: Ith = 2.5 x 1017 W/m2
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Femtosecond micromachining

vary material…
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…threshold varies with band gap (but not much!)
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critical density reached by multiphoton for low gap only

bandgap (eV)

th
re

sh
ol

d 
in

te
ns

ity
 (1

01
7  W

/m
2 )

2.0

3.0

4.0

2.5

3.5

4.5
multiphoton

LiF

CaF2

FS

0211 BK7
SF11

2 124 8 106



Femtosecond micromachining

avalanche ionization important at high gap
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Femtosecond micromachining

what prevents damage at low NA?



Femtosecond micromachining

Competing nonlinear effects:

• multiphoton absorption

• supercontinuum generation

• self-focusing



Femtosecond micromachining

why the difference?

low NAhigh NA
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very different confocal length/interaction length

low NAhigh NA



Femtosecond micromachining

high NA: interaction length too short for self-focusing
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Femtosecond micromachining
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Femtosecond micromachining

Points to keep in mind:

• threshold critically dependent on NA

• surprisingly little material dependence

• avalanche ionization important
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• femtosecond micromachining

• low-energy machining

• applications



Low-energy machining

threshold decreases with increasing numerical aperture
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Low-energy machining

less than 10 nJ at high numerical aperture!
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Low-energy machining

amplified laser: 1 kHz, 1 mJ

100 fs
1 ms

heat diffusion time:   tdiff ≈ 1 µs



Low-energy machining

long cavity oscillator: 25 MHz, 25 nJ

30 fs
40 ns

heat diffusion time:   tdiff ≈ 1 µs



Low-energy machining

50 µm



Low-energy machining

High repetition-rate micromachining:

• structural changes exceed focal volume

• spherical structures

• density change caused by melting
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the longer the irradiation…
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the longer the irradiation…

… the larger the radius
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Low-energy machining

at high-rep rate: internal “point-source of heat”
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Low-energy machining

waveguide micromachining

Opt. Lett. 26, 93 (2001)
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waveguide micromachining

Opt. Lett. 26, 93 (2001)
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curved waveguides

 



Applications

curved waveguides

 



Applications

curved waveguides

 



Applications

curved waveguides

 



Applications

curved waveguides

 



Applications

photonic fabrication techniques

 fs micromachining other

loss (dB/cm) < 3 0.1–3

bending radius 36 mm 30–40 mm

Dn 2 x 10–3 10–4 – 0.5

3D integration Y N
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photonic devices
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all-optical sensor
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all-optical sensor
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sensor gap

 

20 µm

Appl. Phys. Lett. 87, 051106 (2005)
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calibration
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sensor response to 100 Hz acoustic wave
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Applications

ideal tool for ablating (living) tissue

 



Applications

• standard biochemical tools: species selective

• fs laser “nanosurgery”: site specific

 



Applications

Q: can we probe the dynamics of the cytoskeleton?
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actin fiber network of a live cell

10 µm
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cut a single fiber bundle

10 µm
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cut a single fiber bundle

10 µm



Applications

gap widens with time

t = 10 s10 µm



Applications

dynamics provides information on in vivo mechanics

10 µm



Applications

Q: can we probe the neurological origins of behavior?
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Caenorhabditis Elegans



Applications

Caenorhabditis Elegans

• simple model organism

• similarities to higher organisms

• genome fully sequenced

• easy to handle



Applications

Caenorhabditis Elegans

• 80 µm x 1 mm

• about 1300 cells

• 302 neurons

• invariant wiring diagram

• neuronal system completely encodes behavior
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Applications

cut single dendrite in amphid bundle

5 µm
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cut single dendrite in amphid bundle

5 µm



Applications

cut single dendrite in amphid bundle

5 µm



Applications

surgery results in quantifiable behavior changes

before after



Summary
 

great tool for

• “wiring light”

• micromanipulating the machinery of life



Summary
 

 
• important parameters: focusing, energy, repetition rate

• nearly material independent

• two regimes: low and high repetition rate

• high-repetition rate (thermal) machining fast, convenient
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silicon transparent in near IR

visible
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silicon transparent in near IR

visible near IR
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roughening doesn’t change IR transmission…
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…but black silicon blocks IR completely
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black silicon completely black in IR

visible near IR
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band structure changes: defects and/or impurities
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focus on chalcogen-doped silicon
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Structure

1 µm

 
 

• 300-nm disordered surface layer

• undisturbed crystalline core

• surface layer: nanocrystalline Si with 1.6% sulfur



Structure

two processes: melting and ablation
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Structure

different thresholds:

melting: 1.5 kJ/m2

ablation: 3.1 kJ/m2



Structure

decouple ablation from melting
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secondary ion mass spectrometry
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Structure

extended x-ray absorption fine structure spectrum: 

dopant in two different chemical states 



Structure
 
 

Things to keep in mind

• rapid melting and resolidification causes doping

• ablation causes morphology changes

• about 1% impurity in 100-nm thick surface layer

• annealing changes impurity coordination
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• devices
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Optoelectronic properties

effect of annealing on IR absorptance
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Optoelectronic properties

effect of annealing on IR absorptance
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Optoelectronic properties

vary annealing time
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Optoelectronic properties

longer annealing decreases IR absorptance

increasing
annealing time
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Optoelectronic properties

IR absorptance decreases less for Se-doped samples…

Se:Si

S:Si
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Optoelectronic properties

and even less for Te-doped samples…

Se:Si
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Optoelectronic properties

IR absorptance function of species, Tanneal, and tanneal…
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Optoelectronic properties

…but is unique function of diffusion length
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Optoelectronic properties

annealing…

• decreases IR absorptance

• causes recoordination and diffusion of dopants

• IR absorptance reduced by 50% after 20 nm diffusion



Optoelectronic properties

what dopant states/bands cause IR absorption? 
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Optoelectronic properties

at high concentration states broaden into band
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Optoelectronic properties

absorptance (1 – Rint – Tint)
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Optoelectronic properties

should have shallow junction below surface

sulfur-doped layer

p-doped substrate



Optoelectronic properties

excellent rectification (after annealing)
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probe impurity states by varying Fermi level in substrate
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vary substrate doping type and resistivity
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vary substrate doping type and resistivity
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Optoelectronic properties

vary substrate doping type and resistivity
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Optoelectronic properties

vary substrate doping type and resistivity
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Optoelectronic properties

probe impurity states by varying Fermi level in substrate

diode formation
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Optoelectronic properties

IV behavior consistent with 

impurity band between 200 and 400 meV 
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Hall measurements
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Hall measurements
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impurity (donor) band centered at 310 meV
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Optoelectronic properties

Things to keep in mind

• IR absorption rolls off around 8 µm

• 1 in 103 sulfur atoms are ionized donors at 300 K

• all data indicate these S donors are substitutional
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Devices

What causes gain?

• impact excitation (avalanching)

• carrier lifetime >> transit time (photoconductive gain)

• some other mechanism
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…and source provides new electron
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solar spectrum
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Devices

crystalline silicon: transparent to 23% of solar radiation

c-Si band gap = 1.12 μm
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Devices

amorphous silicon: transparent to 53% of solar radiation

a-Si band gap = 0.71 μm
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Devices

black silicon: potential to recover transmitted energy

1353 
W/m2

wavelength ( m)

sp
ec

tra
l i

rra
di

an
ce

 (k
W

/m
2

m
)

μ

μ

0 0.5 1.0 1.5 2.0 2.5

2.5

2.0

1.5

1.0

0.5

0



Devices

very preliminary photovoltaic cell
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Devices

very preliminary photovoltaic cell
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Devices

very preliminary photovoltaic cell
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Devices

1.5% effi ciency, a good beginning
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Devices
 
 

Things to keep in mind

• can turn absorption into carrier generation

• very high responsivity in VIS and IR

• phenomenal photoconductive gain



http://www.sionyx.com

Devices



Conclusion
 

• new doping process

• new class of material

• new types of (silicon-based) devices



Conclusion

What is different about this process?



Conclusion

Compare femtosecond laser doping to:

• inclusion during growth

• thermal diffusion

• ion implantation
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