Nanosurgery with femtosecond lasers

PR-LSAMP Role Model Series Lecture University of Puerto Rico Rio Piedras Rio Piedras, RP, 19 February 2010

- work with GREAT people from around world
- have FUN
- set stage for your CAREER
- and get PAID to do it!

Eric Martin REU '09

University of California Santa Barbara

REU project: holographic microscopy

Steven Chu Award for REU research

accepted for Ph.D. program at Harvard

Page Gel Supplies

Monica Mascarenas REU '08

Monica Mascarenas REU '08

University of New Mexico

REU project: low-cost disease diagnostics

obtained patent for REU research

accepted for many Ph.D. programs across US

MAYOU.

1, Austanite

M

ECAN

Science

MAN

Luis Humberto Rodriguez Cumpiano REU '04

University of Puerto Rico, Mayagüez

REU project: nanofabrication

published in Science

YOU COULD BE ONE OF THEM!

Some Puerto Rican REUs from my group

Jose Garcia REU 1999 Femtosecond laser micromachining Naval Research Labs Washington

Luis Valentin REU 2000 Femtosecond laser micromachining UPR Rio Piedras Ph.D. student

Niviann Blondet REU 2004 Femtosecond laser nanosurgery UPR School of Medicine

Iva Maxwell

Sam Chung

Valeria Nuzzo

Alexander Heisterkamp

and also....

Dr. Eli Glezer Prof. Chris Schaffer Nozomi Nishimura Debayoti Datta Dr. Jonathan Ashcom Jeremy Hwang Dr. Nan Shen Roanna Ruiz Anja Schmalz Prakriti Tayalia

Prof. Don Ingber (Harvard Medical School) Prof. Aravi Samuel (Harvard) Prof. Chris Gabel (Boston University) Dr. Damon Clark (Harvard University) Prof. J.M. Underwood (UMass Worcester) Prof. J.A. Nickerson (UMass Worcester) Prof. Philip LeDuc (Carnegie Mellon) Prof. Sanjay Kumar (UC Berkeley)

Introduction

why use femtosecond pulses?

Introduction

tissue is nearly transparent at 800 nm

• subcellular surgery

nanoneurosurgery

focus laser beam inside material

Opt. Lett. 21, 2023 (1996)

high intensity at focus...

... causes nonlinear ionization...

and 'microexplosion' causes microscopic damage...

SEM & AFM:

- 100-nm cavities
- little colateral damage

Dark-field scattering

block probe beam...

... bring in pump beam...

... damage scatters probe beam

vary numerical aperture

fit gives threshold intensity: $I_{th} = 2.5 \times 10^{17} \text{ W/m}^2$

vary material...

...threshold varies with band gap (but not much!)

• subcellular surgery

nanoneurosurgery

Q: can we ablate material on the subcellular scale?

Requirements:

- submicrometer precision (in bulk)
- no damage to neighboring structures
- independent of structure/organelle type

Cytoskeleton

- gives a cell its shape
- provides a scaffold for organelles
- responsible cell motion and attachment
- facilitates intracellular transport and signaling
- required for cell division

two components

actin fibers

microtubules

epi-fluorescence microscope

fluorescently label sample

UV illumination...

...causes fluorescence

irradiate with fs laser beam

examine resulting ablation

nucleus of fixed endothelial cell

white light microscopy

nucleus of fixed endothelial cell

fluorescence microscopy

irradiate with fs laser

fluorescence microscopy

irradiate with fs laser

fluorescence microscopy

bleaching or ablation?

TEM image

Definitive proof of ablation

- ablation width as small as 100 nm
- ablation threshold varies slightly
- ablation threshold 20% above bleaching threshold

Definitive proof of ablation

- ablation width as small as 100 nm
- ablation threshold varies slightly
- ablation threshold 20% above bleaching threshold

Q: subcellular surgery on live cells?

ethydium bromide test

ethydium bromide test

ethydium bromide test

ethydium bromide test

Q: can we probe the dynamics of the cytoskeleton?

YFP-labeled actin fiber network of a live cell

cut a single fiber bundle

cut a single fiber bundle

gap widens with time

retraction or depolymerization?

retraction or depolymerization?

retraction!

dynamics provides information on in vivo mechanics

overdamped spring:
$$\Delta L = L_{\infty}(1 - e^{-t/\tau}) + L_{o}$$

overdamped spring:
$$\Delta L = L_{\infty}(1 - e^{-t/\tau}) + L_{o}$$

L_{o} and τ independent of fiber width!

tension in actin filaments is generated by myosin motors

Y27: inhibits some myosin activity

ML7: direct inhibitor of myosin activity

femtosecond materials interactions

• subcellular surgery

nanoneurosurgery

Q: can we probe the neurological origins of behavior?

Caenorhabditis elegans

Juergen Berger & Ralph Sommer Max-Planck Institute for Developmental Biology

- simple model organism
- similarities to higher organisms
- genome fully sequenced
- easy to handle

- 80 µm x 1 mm
- about 1000 cells
- 302 neurons
- invariant wiring diagram
- neuronal system completely encodes behavior

C. elegans life cycle

C. elegans life cycle

C. elegans life cycle

Mapping behavior to neurons

Mapping behavior to neurons

- responsible for chemical sensing
- ciliary projections extend through skin
- one on each side

make ASH neurons express GFP

make ASH neurons express GFP

GFP: absorbs UV, emits green

AUA neurons

need exquisite precision!

DiO-stained bundle of dendrites

cut single dendrite in bundle (3 nJ)

no damange to neighboring dendrites

revive worm, reimage 1 day later

osmolarity assay

escape rate after 'mock' surgery

escape rate of ASH-lacking mutant

escape rate after ASH-ablation surgery

AFD neurons (temperature sensors)

Q: where does the ASH sense temperature?

microdroplet assay

microdroplet assay

microdroplet assay

surgery results in quantifiable behavior changes

before

after

temperature sensing occurs at tip of dendrite

Conclusion

great tool for manipulating the machinery of life

Funding:

National Science Foundation

for more information and a copy of this presentation:

http://mazur-www.harvard.edu

http://twitter.com/eric_mazur

doogle search finn cening cucky

mazur			

Google Search	'm Feeling Lucky
---------------	------------------

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Funding:

National Science Foundation

for more information and a copy of this presentation:

http://mazur-www.harvard.edu

http://twitter.com/eric_mazur

Research Experience for Undergraduates @Harvard University

iversity of Puerto Rico Humaco, Puerto Rico, 18 February 2010

Outline

11/----

Outline

• Program structure

• Research

Logistics

end	ar
	end

week 1:	orientation & lab tours
week 2–8:	research
	weekly faculty seminars
week 9:	final project presentation
week 10:	campus-wide symposium

Final project

10-min oral presentation

EHT # 300 K

• plus choice of: video, paper, or poster

Professional development

weekly workshops

post-program conference travel support

support letters for applications

Workshop topics

- writing skills
- public communication skills (with MoS Boston)
- tools for research (MatLab, LaTeX, and Mathematica)
- scientific ethics
- graduate school and career planning

Social program

excursions

BBQ's and potlucks

• sports, dancing, and cultural activities

Research

Research Themes

+01

W Cmpl:

- Nanotechnology
- Materials Science
- Biomaterials
- Solar energy harvesting
- Scientific computing
- Microrobotics

Research

Black silicon

novel form of silicon

more efficient solar cells

build & characterize devices

Biomaterials for cell adhesion

control cell attachment/detachment

tissue engineering, medical implants

fabricate "nanograss" observe cell spreading

Research

Robobees

autonomous insect-like microrobots

search and rescue, pollination

build & characterize devices

Research

Scientific computing

use GPUs to visualize complex systems

biology, astrophysics, quantum chemistry

obtain 3D structure of neurons

W

6

5

13 14

12

Applying

Where:

M

N

)

May

September

F

W

W

M

June

W

M

- 7

reusite.seas. harvard.edu/application

W

July

25 26

November

W

22 2

M

M

Need:

2 recommendation letters & transcript 29 30

M

Deadline:

February 28

²Selection²⁹

mid-April October

W

Applying

Where:

M

N

)

May

September

F

W

W

M

W

S

M

reusite.seas. harvard.edu/application June

W

July

W

November

M

25 26

M

M

Need:

2 recommendation letters & transcript

Deadline:

February 28

²Selection²⁹

mid-April October

NO PREVIOUS EXPERIENCE REQUIRED!

Financial

\$4000 stipend

FRANKLIS

\$350 travel reimbursement

free university housing

option to purchase mealplan

FF 9559473

NJO DO

hh a dh Ph

John W.Snno Secretary of the Treasury.

"I keep in touch with my mentors, and they have continued to support me through graduate school decisions. ... I was lucky to be in a lab environment where investment in the student was just as important as investment in the research project."
"I had a very memorable summer [...]. I made great friends [... and] developed a great relationship with my professor who continues to consult me in regards to my future endeavors."

"I feel strongly that the REU has been my best academic research experience to date, and [...] I decided that research is my passion, and that I want to pursue it regardless of my future career goals."

YOU COULD BE ONE OF THEM!

Apply by February 28

reusite.seas.harvard.edu/application

notification by April 15

Program dates: June 6 – August 14

http://twitter.com/eric_mazur