Wrapping light around a hair

University of Puerto Rico Rio Piedras Rio Piedras, PR, 18 February 2010

Rafael Gattass

Geoff Svacha

Limin Tong

Tobias Voss

and also....

Jonathan Aschom Mengyan Shen Iva Maxwell James Carey Brian Tull Dr. Yuan Lu Dr. Richard Schalek Prof. Federico Capasso Prof. Cynthia Friend

Xuewen Chen (Zhejiang) Zhanghua Han (Zhejiang) Dr. Sailing He (Zhejiang) Liu Liu (Zhejiang) Dr. Jingyi Lou (Zhejiang) Dr. Ray Mariella (LLNL) Prof. Frank Marlow (MPI Mühlheim) Prof. Sven Müller (Göttingen) Prof. Carsten Ronning (Göttingen) "I managed to illuminate the interior of a stream in a dark space. I have discovered that this strange arrangement offers one of the most beautiful, and most curious experiments that one can perform in a course on Optics."

Daniel Colladon, Comptes Rendus, 15, 800-802 (1842)

D. Colladon, *La Nature*, 325 (1884)

4 Sheets-Sheet

W. WHEELER. APPARATUS FOR LIGHTING DWELLINGS OR OTHER STRUCTURES.

No. 247,229. Patented Sept. 20, 1881.

US Patent 247, 229 (1881)

Outline

- waveguiding
- silica nanowires
- manipulating light at the nanoscale
- nanoscale nonlinear optics

two crossed planar waves...

... cause an interference pattern

Waveguiding

E = 0 on the nodal lines

Waveguiding

...satisfying boundary conditions for planar-mirror waveguide

transverse standing wave, traveling along axis

transverse standing wave, traveling along axis

boundary conditions only satisfied for certain $\boldsymbol{\theta}$

standing wave in y-direction, traveling in z-direction

consider wave incident at angle $\,\theta$

twice-reflected wave

Waveguiding

self consistency:

$$AC - AB = 2d \sin \theta = m\lambda \quad (m = 1, 2,)$$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 $(m = 1, 2,)$
 $\sin\theta_m = m \frac{\lambda}{2d}$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 (m = 1, 2,)
 $\sin\theta_m = m \frac{\lambda}{2d}$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 (m = 1, 2,)
 $\sin\theta_m = m \frac{\lambda}{2d}$

self consistency:

$$AC - AB = 2d \sin\theta = m\lambda$$
 ($m = 1, 2,$)
 $\sin\theta_m = m \frac{\lambda}{2d}$

number of modes:

$$M = \frac{2d}{\lambda}$$

now consider a planar dielectric waveguide

rays incident at angle $\theta > \pi/2 - \theta_c$ are unguided

rays incident at angle $\theta < \pi/2 - \theta_c$ are guided

rays incident at angle $\theta < \pi/2 - \theta_c$ are guided

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

self consistency:

$$AC - AB = 2d \sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d \sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

number of modes:

$$M \doteq \frac{\sin(\pi/2 - \theta_c)}{\lambda/2d}$$

number of modes:

$$M \doteq \frac{\sin(\pi/2 - \theta_c)}{\lambda/2d}$$

or:

$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$

propagation constant of guided wave:

$$\beta_m^2 = k^2 - k_y^2 = k^2 - \frac{m^2 \pi^2}{d^2}$$

group velocity:

$$v_m = c \cos \theta_m$$

single mode condition for 600-nm light:

planar mirror
$$M = \frac{2d}{\lambda}$$
 $300 < d < 600 \text{ nm}$

dielectric
$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$
 $d < 268 \text{ nm}$

single mode condition for 600-nm light:

planar mirror
$$M = \frac{2d}{\lambda}$$
 $300 < d < 600 \text{ nm}$

dielectric
$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$
 $d < 268 \text{ nm}$

can make *d* larger by making $n_1 - n_2$ smaller!

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = -i\omega\mu_o \nabla \epsilon \Phi$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

Substituting

$$\vec{A} = \hat{y}u(x,y)e^{-i\beta z}$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

Substituting

$$\vec{A} = \hat{y}u(x,y)e^{-i\beta z}$$

yields:

$$\nabla_T^2 u + \left[-\beta^2 + \omega^2 \mu \epsilon(r)\right] u = 0$$

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

Substituting

$$\vec{A} = \hat{y}u(x,y)e^{-i\beta z}$$

yields:

$$\nabla_T^2 u + \left[-\beta^2 + \omega^2 \mu \epsilon(r)\right] u = 0$$

Compare to time-independent Schrödinger equation:

$$\nabla^2 \psi + \frac{2m}{\hbar^2} [E - V(r)] \psi = 0$$

single mode condition for 600-nm light:

$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$

without cladding: d < 268 nm

Add cladding with 0.4% index difference:

 $d < 5 \ \mu m$

commercial single-mode fiber (Corning Titan[®])

operating wavelength: $\lambda = 1310 \text{ nm}/1550 \text{ nm}$

drawbacks of clad fibers:

- weak confinement
- no tight bending
- coupling requires splicing

Outline

- waveguiding
- silica nanowires
- manipulating light at the nanoscale
- nanoscale nonlinear optics

standard fiber		

Nature, 426, 816 (2003)

ALC: NO

State -

1829

Specifications

diameter D:	down to 20 nm
length L:	up to 90 mm
aspect ratio <i>D/L</i> :	up to 10 ⁶
diameter uniformity $\Delta D/L$:	2 x 10 ⁻⁶

Nature, 426, 816 (2003)

240-nm wire

RMS roughness < 0.5 nm

Points to keep in mind:

- easy fabrication
- atomic level smoothness
- malleable

Outline

- waveguiding
- silica nanowires
- manipulating light at the nanoscale

nanoscale nonlinear optics

Manipulating light at the nanoscale

coupling light into nanowires

coupling light into nanowires

coupling light into nanowires

280-nm nanowire

360 nm

All (1) In an address of the second second

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 600-nm nanowire

Poynting vector profile for 500-nm nanowire

Poynting vector profile for 400-nm nanowire

Poynting vector profile for 300-nm nanowire

Poynting vector profile for 200-nm nanowire

fraction of power carried in core

coupling light between nanowires

coupling light between nanowires

coupling light between nanowires

intensity distribution

minimum bending radius: 5.6 μm

virtually no loss through 5 μ m corner!

450 nm

Balandar Bar Bar Bar Barrant

Aerogel

density: 1.9 kg/m³ index of refraction: 1.03–1.08

2

5 that

530 nm

420 nm

aerogel

in

use tapered fibers to couple light to nanoscale objects
ZnO:non-toxic, wide bandgap semiconductor

vapor transport grown ZnO nanowires

80–400 nm diameter, up to 80 µm long

best of both worlds

ZnO	silica
bottom-up	top-down
semiconductor	glass
active photonic devices	passive waveguides
electrical operation	link to macroworld

FDTD simulation

ab-initio.mit.edu/wiki/index/Meep

large diameter: multimode

small diameter: single mode

Points to keep in mind:

low loss

- large evanescent field
- convenient coupling to nanoscale

Outline

- waveguiding
- silica nanowires
- manipulating light at the nanoscale
- nanoscale nonlinear optics

strong confinement \longrightarrow high intensity

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

nonlinear parameter

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

dispersion important!

dispersion:

- modal dispersion
- material dispersion
- waveguide dispersion
- nonlinear dispersion

waveguide dispersion

Optics Express, 12, 1025 (2004)

waveguide dispersion

Optics Express, 12, 1025 (2004)

waveguide dispersion

Optics Express, 12, 1025 (2004)
waveguide dispersion

waveguide dispersion

nonlinear parameter

nanowire continuum generation

nanowire continuum generation

nanowire continuum generation

nanowire continuum generation

nanowire continuum generation

nanowire continuum generation

nanowire continuum generation

energy in nanowire < 100 pJ!

easy fabrication

convenient nanoscale light manipulation

nanoscale nonlinear optics

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur-www.harvard.edu

doogle search finn cening bucky

mazur			

Google Search	'm Feeling Lucky
---------------	------------------

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur-www.harvard.edu

coupling efficiency

coupling efficiency

single-mode cutoff

single-mode cutoff

single-mode cutoff

loss measurement

Nature, 426, 816 (2003)

loss measurement

Nature, 426, 816 (2003)
loss measurement

loss at single-mode diameter < 0.1 dB/mm

