

Outline

Background

Motivation: hot spot distribution

Hot spot isolation

Conclusion

Background

Background

Background

Surface enhancement

Surface enhancement

Background

Diebold, et al. *Langmuir* **25**, 1790 (2009)

Background

Silicon

- 1. Femtosecond laser structuring
- 2. Thermal evaporation 80nm Ag

Active region

Average enhancement factor (benzenethiol) ~ 10⁷

Outline

Background

Motivation: hot spot distribution

Hot spot isolation

Conclusion

Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering

Ying Fang, Nak-Hyun Seong, Dana D. Dlott

Raman enhancement factor η	Percentage of molecules	Percentage contribution to overall SERS signal
<2.8 × 10 ⁴	0	0
$2.8 \times 10^4 \text{ to } 1 \times 10^5$	61%	4%
10 ⁵ to 10 ⁶	33%	11%
10 ⁶ to 10 ⁷	5.1%	16%
10 ⁷ to 10 ⁸	0.7%	22%
10 ⁸ to 10 ⁹	0.08%	23%
10 ⁹ to 10 ¹⁰	0.006%	17%
>10 ¹⁰	0.0003%	7%

Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering

Ying Fang, Nak-Hyun Seong, Dana D. Dlott

Raman enhancement factor η	Percentage of molecules	Percentage contribution to overall SERS signal
<2.8 × 10 ⁴	0	0
$2.8 \times 10^4 \text{ to } 1 \times 10^5$	61%	4%
10 ⁵ to 10 ⁶	33%	11%
10 ⁶ to 10 ⁷	5.1%	16%
10 ⁷ to 10 ⁸	0.7%	22%
10 ⁸ to 10 ⁹	0.08%	23%
10 ⁹ to 10 ¹⁰	0.006%	17%
>10 ¹⁰	0.0003%	7%

Only **63** out of **1,000,000** sites are "hot spots" (EF $> 10^9$), yet their contribution to the total SERS signal is 24%!

Fang, et al. *Science* **381**, 288 (2008)

If N_{analyte} is small, how do we ensure that molecules adsorb only to hot spots?

If N_{analyte} is small, how do we ensure that molecules adsorb only to hot spots?

Outline

Background

Motivation: hot spot distribution

Hot spot isolation

Conclusion

1 Spin coat positive-tone resist

Shipley S1805 photoresist (~30nm thick layer)

2 Femtosecond-laser exposure

Multiphoton-induced luminescence from Ag hot spots exposes photoresist

3 Development

Developer removes exposed areas, uncovering hot spots

HSI substrates expected to show higher enhancement under conditions of sub-monolayer coverage.

HSI substrates expected to show higher enhancement under conditions of sub-monolayer coverage.

N_{analyte} << N_{adsorption sites}

HSI-SERS substrate

SERS substrate

Analyte binds exclusively to exposed hot spots

Analyte distributed over both hot and cold spots

HSI substrates expected to show higher enhancement under conditions of sub-monolayer coverage.

HSI-SERS substrate

SERS substrate

Analyte binds exclusively to exposed hot spots

Analyte distributed over both hot and cold spots

 λ_{center} = 795nm, τ = 60fs, 100 pulses/spot

 λ_{center} = 795nm, τ = 60fs, 100 pulses/spot

Increasing fluence

Increasing fluence

24-hour incubation with 4 femtomoles of benzenethiol 12mW, 785nm excitation, 30s integration, 0.40NA objective

Diebold et al., J. Am. Chem. Soc., 131, 16356-16357 (2009)

27× times signal improvement (998 cm⁻¹ band)

Diebold et al., J. Am. Chem. Soc., 131, 16356-16357 (2009)

Average enhancement factor:

Submonolayer coverage:

24 hour incubation with 2.4×10^9 molecules = 0.001% surface coverage.

Average enhancement factor:

Submonolayer coverage:

24 hour incubation with 2.4×10^9 molecules = 0.001% surface coverage.

Signal normalized to neat benzenethiol using confocal microscope method.

$$EF = \frac{I_{SERS}}{I_{Neat}} \frac{N_{Neat}}{N_{SERS}}$$

Average enhancement factor:

Submonolayer coverage:

24 hour incubation with 2.4×10^9 molecules = 0.001% surface coverage.

Signal normalized to neat benzenethiol using confocal microscope method.

Enhancement factor (998 cm⁻¹) = 3×10^9

Outline

Background - laser nanostructured substrates

Motivation: hot spot distribution

Hot spot isolation

Conclusion

Conclusion

Take home message

Hot spot isolation:

1. is generally applicable to noble metal SERS substrates and masks "cold spots," allowing molecules to bind only to "hot spots."

Conclusion

Take home message

Hot spot isolation:

- 1. is generally applicable to noble metal SERS substrates and masks "cold spots," allowing molecules to bind only to "hot spots."
- 2. does not require knowledge of hot spot location or enhancement factor.

Conclusion

Take home message

Hot spot isolation:

- 1. is generally applicable to noble metal SERS substrates and masks "cold spots," allowing molecules to bind only to "hot spots."
- 2. does not require knowledge of hot spot location or enhancement factor.
- 3. offers significant SERS signal improvement under sub-monolayer coverage.

Mazur group

Center for Nanoscale Systems, Harvard University

DARPA S&T fundametals program

NDSEG fellowship

Hot spots in random metallic nanoparticle clusters exhibit large spatial dispersion.

Hot spot dispersion necessitates overlap of Raman excitation and fs-exposure spectra.

Hot spots in random metallic nanoparticle clusters exhibit large spatial dispersion (x-y units in nanometers)

Grésillon et al. Phys. Rev. Lett. 82 4520-4523 (1999)