

Outline

SERS hot spot isolation:

Background

Motivation: hot spot distribution

Hot spot isolation

Plasmon-enhanced laser cell transfection:

Background: femtosecond laser cell transfection

Motivation: plasmonic substrates

Ultrafast plasmon-cell interactions

Outline

SERS hot spot isolation:

Background

Motivation: hot spot distribution

Hot spot isolation

Plasmon-enhanced laser cell transfection:

Background: femtosecond laser cell transfection

Motivation: plasmonic substrates

Ultrafast plasmon-cell interactions

 Near-field scattered electric field enhances polarization of molecules located near surface

$$\frac{|E_s|}{|E_0|} \propto \frac{\varepsilon_1(\omega) - \varepsilon_2}{\varepsilon_1(\omega) + 2\varepsilon_2}$$

- Near-field scattered electric field enhances polarization of molecules located near surface
- Field from molecular polarization generates polarization of sphere at Raman frequency

- Near-field scattered electric field enhances polarization of molecules located near surface
- Field from molecular polarization generates polarization of sphere at Raman frequency
- 3. Sphere polarization radiates Raman field into far field

Electromagnetic SERS enhancement factor:

$$\frac{I_{\text{SERS}}}{I_{\text{Normal Raman}}} \propto \left(\frac{\left|E_{s}\left(\omega_{0}\right)\right|}{\left|E_{0}\left(\omega_{0}\right)\right|}\right)^{2} \times \left(\frac{\left|E_{s}\left(\omega_{0}-\omega_{R}\right)\right|}{\left|E_{0}\left(\omega_{0}-\omega_{R}\right)\right|}\right)^{2} \approx \left(\frac{\left|E_{s}\left(\omega_{0}\right)\right|}{\left|E_{0}\left(\omega_{0}\right)\right|}\right)^{4}$$

Electromagnetic SERS enhancement factor:

$$\frac{I_{\text{SERS}}}{I_{\text{Normal Raman}}} \propto \left(\frac{\left|E_{s}\left(\omega_{0}\right)\right|}{\left|E_{0}\left(\omega_{0}\right)\right|}\right)^{2} \times \left(\frac{\left|E_{s}\left(\omega_{0}-\omega_{R}\right)\right|}{\left|E_{0}\left(\omega_{0}-\omega_{R}\right)\right|}\right)^{2} \approx \left(\frac{\left|E_{s}\left(\omega_{0}\right)\right|}{\left|E_{0}\left(\omega_{0}\right)\right|}\right)^{4}$$

$$\sigma' \simeq \sigma \left| \frac{\varepsilon_1(\omega) - \varepsilon_2}{\varepsilon_1(\omega) + 2\varepsilon_2} \right|^2 \left| \frac{\varepsilon_1(\omega) - \varepsilon_2}{\varepsilon_1(\omega) + 2\varepsilon_2} \right|^2 \left(\frac{a}{a+r} \right)^{12}$$

E.D. Diebold, et al. *Langmuir* **25**, 1790 (2009)

Silicon

- 1. Femtosecond laser structuring
- 2. Thermal evaporation 80nm Ag

Active region

Average enhancement factor (benzenethiol) ~ 10⁷

Outline

SERS hot spot isolation:

Background

Motivation: hot spot distribution

Hot spot isolation

Plasmon-enhanced laser cell transfection:

Background: femtosecond laser cell transfection

Motivation: plasmonic substrates

Ultrafast plasmon-cell interactions

Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering

Ying Fang, Nak-Hyun Seong, Dana D. Dlott

Raman enhancement factor η	Percentage of molecules	Percentage contribution to overall SERS signal
<2.8 × 10 ⁴	0	0
$2.8 \times 10^4 \text{ to } 1 \times 10^5$	61%	4%
10 ⁵ to 10 ⁶	33%	11%
10 ⁶ to 10 ⁷	5.1%	16%
10 ⁷ to 10 ⁸	0.7%	22%
10 ⁸ to 10 ⁹	0.08%	23%
10 ⁹ to 10 ¹⁰	0.006%	17%
>10 ¹⁰	0.0003%	7%

Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering

Ying Fang, Nak-Hyun Seong, Dana D. Dlott

Raman enhancement factor η	Percentage of molecules	Percentage contribution to overall SERS signal
<2.8 × 10 ⁴	0	0
$2.8 \times 10^4 \text{ to } 1 \times 10^5$	61%	4%
10 ⁵ to 10 ⁶	33%	11%
10 ⁶ to 10 ⁷	5.1%	16%
10 ⁷ to 10 ⁸	0.7%	22%
10 ⁸ to 10 ⁹	0.08%	23%
10 ⁹ to 10 ¹⁰	0.006%	17%
>10 ¹⁰	0.0003%	7%

Only **63** out of **1,000,000** sites are "hot spots" (EF $> 10^9$), yet their contribution to the total SERS signal is 24%!

Fang, et al. *Science* **381**, 288 (2008)

If N_{analyte} is small, how do we ensure that molecules adsorb only to hot spots?

If N_{analyte} is small, how do we ensure that molecules adsorb only to hot spots?

Outline

SERS hot spot isolation:

Background: laser nanostructured substrates

Motivation: hot spot distribution

Hot spot isolation

Plasmon-enhanced laser cell transfection:

Background: femtosecond laser cell transfection

Motivation: plasmonic substrates

Ultrafast plasmon-cell interactions

1 Spin coat positive-tone resist

Shipley S1805 photoresist (~30nm thick layer)

2 Femtosecond-laser exposure

Multiphoton-induced luminescence from Ag hot spots exposes photoresist

3 Development

Developer removes exposed areas, uncovering hot spots

HSI substrates expected to show higher enhancement under conditions of sub-monolayer coverage.

HSI substrates expected to show higher enhancement under conditions of sub-monolayer coverage.

N_{analyte} << N_{adsorption sites}

HSI-SERS substrate

SERS substrate

Analyte binds exclusively to exposed hot spots

Analyte distributed over both hot and cold spots

HSI substrates expected to show higher enhancement under conditions of sub-monolayer coverage.

HSI-SERS substrate

SERS substrate

Analyte binds exclusively to exposed hot spots

Analyte distributed over both hot and cold spots

 λ_{center} = 795nm, τ = 60fs, 100 pulses/spot

 λ_{center} = 795nm, τ = 60fs, 100 pulses/spot

Increasing fluence

Increasing fluence

24-hour incubation with 4 femtomoles of benzenethiol 12mW, 785nm excitation, 30s integration, 0.40NA objective

Diebold et al., J. Am. Chem. Soc., 131, 16356-16357 (2009)

27× times signal improvement (998 cm⁻¹ band)

Diebold et al., J. Am. Chem. Soc., 131, 16356-16357 (2009)

Average enhancement factor:

Submonolayer coverage:

24 hour incubation with 2.4×10^9 molecules = 0.001% surface coverage.

Average enhancement factor:

Submonolayer coverage:

24 hour incubation with 2.4×10^9 molecules = 0.001% surface coverage.

Signal normalized to neat benzenethiol using confocal microscope method.

$$EF = \frac{I_{SERS}}{I_{Neat}} \frac{N_{Neat}}{N_{SERS}}$$

Average enhancement factor:

Submonolayer coverage:

24 hour incubation with 2.4×10^9 molecules = 0.001% surface coverage.

Signal normalized to neat benzenethiol using confocal microscope method.

Enhancement factor (998 cm⁻¹) = 3×10^9

Conclusion

Take home message

Hot spot isolation:

1. is generally applicable to noble metal SERS substrates and masks "cold spots," allowing molecules to bind only to "hot spots."

Conclusion

Take home message

Hot spot isolation:

- 1. is generally applicable to noble metal SERS substrates and masks "cold spots," allowing molecules to bind only to "hot spots."
- 2. does not require knowledge of hot spot location or enhancement factor.

Conclusion

Take home message

Hot spot isolation:

- 1. is generally applicable to noble metal SERS substrates and masks "cold spots," allowing molecules to bind only to "hot spots."
- 2. does not require knowledge of hot spot location or enhancement factor.
- 3. offers significant SERS signal improvement under sub-monolayer coverage.

Plasmon-enhanced laser cell transfection

Outline

SERS hot spot isolation:

Background: laser nanostructured substrates

Motivation: hot spot distribution

Hot spot isolation

Plasmon-enhanced laser cell transfection:

Background: femtosecond laser cell transfection

Motivation: plasmonic substrates

Ultrafast plasmon-cell interactions

Cell transfection: "infection by transformation"

Introduction of biological material into a cell, resulting in a modification of its genetic composition

Cell transfection is central to:

Genetic engineering

Potential gene therapies - DNA, siRNA, etc.

Basic biological research

Linear vs. nonlinear absorption

Linear vs. nonlinear absorption

transparent material

Transfection of cells with near-100% efficiency

Excellent efficiency, but terrible throughput!

Human CD4 thymic epithelial cells, on flat substrate

How do we optimize the laser parameters?

Laser parameters are critical to cell viability:

High-NA (>1.0) focusing
50-200mW avg. power at 80 MHz repetition rate
~100 fs pulse duration
10-100 ms exposure time

How do we optimize the laser parameters?

Laser parameters are critical to cell viability:

High-NA (>1.0) focusing
50-200mW avg. power at 80 MHz repetition rate
~100 fs pulse duration
10-100 ms exposure time

Pore size smaller than ~2µm is required for cell viability

How do we optimize the laser parameters?

Using a lipid-sensitive fluorescent dye, we can monitor diffusion into the cell, as well as cell wound-healing.

brightfield

fluorescence (488-nm excitation)

Outline

SERS hot spot isolation:

Background: laser nanostructured substrates

Motivation: hot spot distribution

Hot spot isolation

Plasmon-enhanced laser cell transfection:

Background: femtosecond laser cell transfection

Motivation: plasmonic substrates

Ultrafast plasmon-cell interactions

Use sub-wavelength focusing of plasmonic nanostructures to replace high-NA focusing.

Use sub-wavelength focusing of plasmonic nanostructures to replace high-NA focusing.

Larger laser pulse energies combined with larger spot sizes and/or scanning, many cells can be transfected quickly.

Use sub-wavelength focusing of plasmonic nanostructures to replace high-NA focusing.

Larger laser pulse energies combined with larger spot sizes and/or scanning, many cells can be transfected quickly.

Use sub-wavelength focusing of plasmonic nanostructures to replace high-NA focusing.

Larger laser pulse energies combined with larger spot sizes and/or scanning, many cells can be transfected quickly.

Outline

SERS hot spot isolation:

Background: laser nanostructured substrates

Motivation: hot spot distribution

Hot spot isolation

Plasmon-enhanced laser cell transfection:

Background: femtosecond laser cell transfection

Motivation: plasmonic substrates

Ultrafast plasmon-cell interactions

The choice of plasmonic substrate has specific requirements:

- 1. Field enhancement must be in close proximity to cell membrane.
- 2. Field enhancing regions (areas of damage) must be accessible to DNA, RNA, etc. in surrounding solution.
- 3. Substrate fabrication method must be scalable in size.

Proposed substrate: template-stripped gold pyramid array

KOH-etched silicon wafer: Gold coated, supports NIR localized plasmons inside pyramidal pits

Proposed substrate: template-stripped gold pyramid array

Template stripping exploit poor adhesion of noble metals on silicon

30nm Au on polyurethane

30nm Au on polyurethane

Cell viability on pyramidal substrates

Cell viability on pyramidal substrates

Where is the field enhancement?

Two-photon absorption polymerization is an intensity-dependent nonlinear effect. Polymer is formed where the field is most intense.

Where is the field enhancement?

Two-photon absorption polymerization is an intensity-dependent nonlinear effect. Polymer is formed where the field is most intense.

after washing in ethanol

Where is the field enhancement?

Two-photon absorption polymerization is an intensity-dependent nonlinear effect. Polymer is formed where the field is most intense.

Plasmon-enhanced cell perforation

Using the pyramidal substrate, we observe a 32x reduction in pulse energy to generate cell perforation comparable to flat coverslip substrate.

Green fluorescent protein DNA transfection:

State of the art, lipid-based reagents

Green fluorescent protein DNA transfection:

Pyramidal substrate, large-area laser scan

Take home message

1. Large-area plasmonic substrates are bio-compatible for use with large numbers of cells.

Take home message

- 1. Large-area plasmonic substrates are bio-compatible for use with large numbers of cells.
- 2. Plasmonic substrates can reduce laser energy threshold for localized cell membrane damage.

Take home message

- 1. Large-area plasmonic substrates are bio-compatible for use with large numbers of cells.
- 2. Plasmonic substrates can reduce laser energy threshold for localized cell membrane damage.
- 3. Specialized design requirements (hot spot pitch, location, aspect ratio) are important for plasmon-enhanced transfection.

Thank you!

Mazur group

Dr. Andrew Koh (HMS, now Stanford)

Center for Nanoscale Systems, Harvard University

DARPA: SERS S&T Fundamentals Program

Hot spot isolation

Hot spots in random metallic nanoparticle clusters exhibit large spatial dispersion.

Hot spot dispersion necessitates overlap of Raman excitation and fs-exposure spectra.