Black silicon: engineering an intermediate

Physics and Applications of "Black" Materials DSRC/DARPA Workshop Arlington, VA, 31 March 2010

Mark Winkler

Renee Sher

Yu-Ting Lin

Eric Mazur

and also....

Eric Diebold Haifei Albert Zhang William Whitney Dr. Brian Tull **Dr. Jim Carey Prof. Tsing-Hua Her** Dr. Shrenik Deliwala **Dr. Richard Finlay Dr. Michael Sheehy** Dr. Claudia Wu Dr. Rebecca Younkin **Prof. Catherine Crouch Prof. Mengyan Shen** Prof. Li Zhao

Dr. John Chervinsky Dr. Joshua Levinson

Prof. Michael Aziz Prof. Cynthia Friend Prof. Howard Stone Prof. Tonio Buonassisi (MIT) Prof. Silvija Gradecak (MIT) Dr. Bonna Newman (MIT) Joe Sullivan (MIT) Matthew Smith (MIT)

Prof. Augustinus Asenbaum (Vienna)

Dr. François Génin (LLNL) Mark Wall (LLNL)

Dr. Richard Farrell (RMD) Dr. Arieh Karger (RMD) Dr. Richard Meyers (RMD)

Dr. Pat Maloney (NVSED)

Dr. Jeffrey Warrander (ARDEC)

irradiate with 100-fs 10 kJ/m² pulses

TRUST

Since first publication (1998):

• optoelectronic properties (2001)

- optoelectronic properties (2001)
- field emission (2001)

- optoelectronic properties (2001)
- field emission (2001)
- structuring of metals and other materials (2001)

- optoelectronic properties (2001)
- field emission (2001)
- structuring of metals and other materials (2001)
- (super)hydrophobic properties (2006)

- optoelectronic properties (2001)
- field emission (2001)
- structuring of metals and other materials (2001)
- (super)hydrophobic properties (2006)
- field enhancement properties (2009)

Since first publication (1998):

- optoelectronic properties (2001)
- field emission (2001)
- structuring of metals and other materials (2001)
- (super)hydrophobic properties (2006)
- field enhancement properties (2009)

6 Ph.D. Theses and 12 patents

absorptance
$$(1 - R_{int} - T_{int})$$

R

absorptance
$$(1 - R_{int} - T_{int})$$

band structure changes: defects and/or impurities

OPTICAL	ELECTRONIC	STRUCTURAL
UV-VIS-NIR FTIR photoluminescence PTD spectroscopy UPS XPS	Hall measurements conductivity IV rectification c-AFM	SEM TEM EDX SAD EXAFS AFM SIMS
respo photocor	nsivity nductivity	RBS ion channeling

OPTICAL	ELECTRONIC	STRUCTURAL
UV-VIS-NIR FTIR photoluminescence PTD spectroscopy UPS XPS respon photocor	Hall measurements conductivity IV rectification c-AFM	SEM TEM EDX SAD EXAFS AFM SIMS RBS ion channeling
gap impurity band transitions		

OPTICAL	ELECTRONIC	STRUCTURAL	
UV-VIS-NIR FTIR photoluminescence PTD spectroscopy UPS XPS	Hall measurements conductivity IV rectification c-AFM	SEM TEM EDX SAD EXAFS AFM SIMS	
responsivity photoconductivity		RBS ion channeling	
gap impurity band transitions	carrier concentration mobilities junction properties		

OPTICAL	ELECTRONIC	STRUCTURAL
UV-VIS-NIR FTIR photoluminescence PTD spectroscopy UPS XPS respon	Hall measurements conductivity IV rectification c-AFM	SEM TEM EDX SAD EXAFS AFM SIMS RBS
gap impurity band transitions	ductivity carrier concentration mobilities junction properties	ion channeling morphology composition atomic structure

new process & new class of material!

gap determines optical and electronic properties

shallow-level dopants control electronic properties

shallow-level dopants control electronic properties

deep-level dopants typically avoided

femtosecond laser-doping gives rise to intermediate band

Outline

De

2 Disity

Sei Pr

- structure
- optoelectronic properties

1/24/03 9 kJ/m (1 sam

• devices

cross-sectional Transmission Electron Microscopy

disordered surface layer 1 µm
crystalline Si core

- 300-nm disordered surface layer
- undisturbed crystalline core

• surface layer: nanocrystalline Si with 1.6% sulfur

1 µm

two processes: melting and ablation

different thresholds:

melting: 1.5 kJ/m²

ablation: 3.1 kJ/m²

secondary ion mass spectrometry

Things to keep in mind

- rapid melting and resolidification causes doping
- ablation causes morphology changes
- about 1% impurity in 100-nm thick surface layer
- annealing changes impurity coordination

Outline

Da

2 Disto

950 P

• structure

optoelectronic properties

1/24/03 9 kJ/m2 (+ same

• devices

absorptance
$$(1 - R_{int} - T_{int})$$

Asenbaum, Vienna

what dopant states/bands cause IR absorption?

1 part in 10⁶ sulfur introduces donor states in gap

Janzén et al., Phys. Rev. B 29, 1907 (1984)

1 part in 10⁶ sulfur introduces donor states in gap

Janzén et al., Phys. Rev. B 29, 1907 (1984)

at high concentration states broaden into band

absorptance $(1 - R_{int} - T_{int})$

10⁻⁶ sulfur doping

laser-doped S:Si

laser-doped S:Si

laser-doped S:Si

should have shallow junction below surface

excellent rectification (after annealing)

IV behavior consistent with

impurity band between 200 and 400 meV

isolate surface layer for Hall measurements

device layer

buried oxide

silicon substrate

isolate surface layer for Hall measurements

device layer buried oxide

silicon substrate

isolate surface layer for Hall measurements

laser doped region

buried oxide

silicon substrate

isolate surface layer for Hall measurements

isolate surface layer for Hall measurements

impurity (donor) band centered at 310 meV

majority carrier mobility

Caughey et al., Proc. IEEE 55, 2192 (1967)

majority carrier mobility

Caughey et al., Proc. IEEE 55, 2192 (1967)

Things to keep in mind

- IR absorption rolls off around 8 µm
- 1 in 10³ sulfur atoms are ionized donors at 300 K
- all data indicate these S donors are substitutional

Outline

3

1/24/03 9 kJ/m2 (+ Same CLES

DA

SUSSIS S

95037

• structure

• optoelectronic properties

devices

Devices

What causes gain?

- impact excitation (avalanching)
- carrier lifetime >> transit time (photoconductive gain)
- some other mechanism

Things to keep in mind

- can turn absorption into carrier generation
- very high responsivity in VIS and IR
- phenomenal photoconductive gain

SiOnyx

new doping process

new class of material

new types of (silicon-based) devices

What is different about this process?

Compare femtosecond laser doping to:

- inclusion during growth
- thermal diffusion
- ion implantation

Funding: Army Research Office DARPA Department of Energy NDSEG National Science Foundation

for more information and a copy of this presentation:

http://mazur-www.harvard.edu

doogle search finn cening bucky

mazur			

Google Search	'm Feeling Lucky
---------------	------------------

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>
Funding: Army Research Office DARPA Department of Energy NDSEG National Science Foundation

for more information and a copy of this presentation:

http://mazur-www.harvard.edu

