The scientific approach to teaching: Research as a basis for course design

Education

Education

lectures focus on delivery of information

Education

not transfer but assimilation of information is key

My message

let's not abandon the scientific method when teaching

My message

let's not abandon the scientific method when teaching

The plural of anecdote is not data

Lee Shulman

Outline

• Gender issues

• Lecture demonstrations

Confusion

what causes this gap?

is it cultural?

strong dependence on culture!

effect of precollege education

everyone gains...

...but gap persists...

...and women underrepresented

Dires

X

what can we do?

increase collaboration and interactivity

100

N

Compare three pedagogies:

- **T: traditional lectures**
- I: interactive lectures
- I⁺: interactive assignments, lectures, and tutorials

does pedagogy help?

does pedagogy help?

does pedagogy help?

yes, pedagogy can eliminate gap!

Am. J. Phys. 74, 118 (2006)

who are the low-gain students?

traditional class

traditional class

traditional class: gender imbalance

interactive class

interactive class: gender balance

Points to keep in mind:

- gap comes from culture and background
- interactivity makes a difference

Lecture demonstrations

how effective are lecture demonstrations?

Lecture demonstrations

Carry out seven demonstrations in four "modes":

- no demo (control)
- observe
- predict
- discuss

Lecture demonstrations

Carry out seven demonstrations in four "modes":

- no demo (control)
- observe
- predict (+2 mins.)
- discuss (+8 mins.)
Follow up:

- free-response test (online)
- exam questions

loaded beam demo

online test question

answers given

answers given

answers given

answers given

6%: forces not balanced; 2%: other incorrect

mode	correct	incorrect	
no demo	30%	70%	
observe	18%	82%	
predict	29%	71%	
discuss	30%	70%	

mode	correct	incorrect
no demo	30%	70%
observe	18%	82%
predict	29%	71%
discuss	30%	70%

just presenting harmful?

exam question

A uniform plank is supported by two ropes at points *P* and *Q*. The tension in the rope at *P* is 150 N.

exam question

A uniform plank is supported by two ropes at points *P* and *Q*. The tension in the rope at *P* is 150 N. The point at which the other rope is attached to the plank is now moved to point *R* halfway between Q and the center of the plank. What are the tensions in the two ropes?

correct answer

considerable improvement from online test

incorrect answers

incorrect answers

incorrect answers

incorrect answers

who would have thought??

mode	correct	balances torques	no clear reasoning
no demo	31%	53%	42%
observe	42%	55%	42%
predict	41%	65%	32%
discuss	46%	85%	15%

aggregate results for seven demonstrations

mode	Ν	R _{outcome}	R _{explanation}
no demo	297	61%	22%
observe	220	70%	24%
predict	179	77%	30%
discuss	158	82%	32%

improvement correlates with engagement

Am. J. Phys. 72, 835 (2004)

improvement correlates with engagement

Am. J. Phys. 72, 835 (2004)

Points to keep in mind:

- demonstrations without engagement not very helpful
- results can be improved by having students predict outcome

instructors are praised for 'clear' lectures

confusion is discouraging, but...

confusion is discouraging, but...

"to wonder is to begin to understand"

does confusion indicate lack of understanding?

or, alternatively:

does lack of confusion indicate understanding?

Web-based free-response reading assignment:

- two questions on content (difficult!)
- one feedback question

Novak et al., Just-in-Time Teaching: Blending active learning with web technology (Prentice Hall, 1999).

Web-based free-response reading assignment:

- two questions on content (difficult!)
- one feedback question

analyze understanding and confusion

Novak et al., Just-in-Time Teaching: Blending active learning with web technology (Prentice Hall, 1999).

1. Consider the capillary rise of a liquid in a glass tube. How does the pressure at point *P* at the surface of the liquid compare to the pressure at point *Q* at equal height?

1. Consider the capillary rise of a liquid in a glass tube. How does the pressure at point *P* at the surface of the liquid compare to the pressure at point *Q* at equal height?

2. Two identical balloons are connected to a tube as shown below. Balloon *B* is inflated more than balloon *A*. Which way does the air flow when valve *P* is opened?

3. Please tell us briefly what points of the reading you found most difficult or confusing. If you did not find any part of it difficult or confusing, please tell us what parts you found most interesting.

sample answer

1. Capillary action is due to the cohesion between water molecules, and the adhesion of water to the surface of the glass tube. Negative pressures can result from the cohesive forces of water. At the same height, the pressure inside the tube is much less due to negative pressures.

2. The air flows from high pressure to low pressure. The fully blown up balloon has higher pressure than the 1/2 blown up balloon. So the air flows from the fully blown balloon to the half filled balloon.

sample answer

1. Capillary action is due to the cohesion between water molecules, and the adhesion of water to the surface of the glass tube. Negative pressures can result from the cohesive forces of water. At the same height, the pressure inside the tube is much less due to negative pressures.

2. The air flows from high pressure to low pressure. The fully blown up balloon has higher pressure than the 1/2 blown up balloon. So the air flows from the fully blown balloon to the half filled balloon.

sample answer

1. Capillary action is due to the cohesion between water molecules, and the adhesion of water to the surface of the glass tube. Negative pressures can result from the cohesive forces of water. At the same height, the pressure inside the tube is much less due to negative pressures.

2. The air flows from high pressure is low pressure. The fully blown up balloon has higher pressure than the 1/2 blown up balloon. So the air flows from the fully blown balloon to the half filled balloon.

sample answer

1. Capillary action is due to the cohesion between water molecules, and the adhesion of water to the surface of the glass tube. Negative pressures can result from the cohesive forces of water. At the same height, the pressure inside the tube is much less due to negative pressures.

2. The air flows from high pressure is low pressure. The fully blown up balloon has higher pressure than the 1/2 blown up balloon. So the air flows from the fully blown balloon to the half filled balloon.
1. The water rises because of an interaction between the water and the walls of the tube. This interaction creates an upward force which causes the water to rise. The force is due to surface tension between the water and the walls of the tube. The pressure at the point inside the tube must be the same as the pressure at the point of equal height outside the tube, because if there was a pressure difference, then there would be a net flow of water, into or out of the tube, until the pressure difference was equalized.

2.Laplace's law tells us that it requires a greater pressure difference to maintain a small sphere than a larger one. So, the pressure in the small balloon must be greater, and the air will flow from the small balloon into the large one.

1. The water rises because of an interaction between the water and the walls of the tube. This interaction creates an upward force which causes the water to rise. The force is due to surface tension between the water and the walls of the tube. The pressure at the point inside the tube must be the same as the pressure at the point of equal height outside the tube, because if there was a pressure difference, then there would be a net flow of water, into or out of the tube, until the pressure difference was equalized.

2.Laplace's law tells us that it requires a greater pressure difference to maintain a small sphere than a larger one. So, the pressure in the small balloon must be greater, and the air will flow from the small balloon into the large one.

1. The water rises because of an interaction between the water and the walls of the tube. This interaction creates an upward force which causes the water to rise. The force is due to surface tension between the water and the walls of the tube. The pressure at the point inside the tube must be the same as the pressure at the point of equal height outside the tube, because if there was a pressure difference, then there would be a net flow of water, into or out of the tube, until the pressure difference was equalized.

2.Laplace's law tells us that it requires a greater pressure difference to maintain a small sphere than a larger one. So, the pressure in the small balloon must be greater, and the air will flow from the small balloon into the large one.

1. The water rises because of an interaction between the water and the walls of the tube. This interaction creates an upward force which causes the water to rise. The force is due to surface tension between the water and the walls of the tube. The pressure at the point inside the tube must be the same as the pressure at the point of equal height outside the tube, because if there was a pressure difference, then there would be a net flow of water, into or out of the tube, until the pressure difference was equalized.

2.Laplace's law tells us that it requires a greater pressure difference to maintain a small sphere than a larger one. So, the pressure in the small balloon must be greater, and the air will flow from the small balloon into the large one.

Analysis

Coding of responses:

- Q1 and Q2: correct or incorrect
- Q3: confusion expressed on topic of Q1/Q2

Correlate confusion with correctness

traditional textbook on Laplace's law and capillarity

capillarity	correct	incorrect	
confused not confused	44% 25%	56% 75%	

traditional textbook on Laplace's law and capillarity

capillarity	correct	incorrect
confused	44%	56%
not confused	25%	75%
Laplace	correct	incorrect
confused	49%	51%
not confused	21%	79%

"Confused" students twice as likely correct!

using research-based text

torque	correct	incorrect	
confused	45%	55%	
not confused	43%	57%	

using research-based text

torque	correct	incorrect	
confused	45%	55%	
not confused	43%	57%	

text compels students to think while reading

More confusion among students who understand! (especially when students are not pushed to think)

Confusion...

- doesn't correlate with understanding
- is not (necessarily) the result of poor teaching
- is part of the learning process

classroom data vital to improving education!

Acknowledgments:

Catherine Crouch Mercedes Lorenzo Paul Callan Adam Fagen Jessica Watkins Emily Fair Oster

Pat and Ken Heller (UMN) Laura McCullough (UMN) Steve Pierson (WPI) Tom Keil (WPI)

Funding:

National Science Foundation

for a copy of this presentation:

http://mazur-www.harvard.edu

doogle search finn cening cucky

mazur			

Google Search	I'm Feeling Lucky
[(

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Funding:

National Science Foundation

for a copy of this presentation:

http://mazur-www.harvard.edu

