Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010

Michael Brenner

Alan Aspuru-Guzik

Cynthia Friend

Eric Mazur

Aspuru group:

Brenner group:

Friend group:

Tobias Schneider (PD) Scott Norris (PD) Niall Mangan (GS)

Anne Co (PD) Stephen Jensen (GS)

Mazur group:

Meng-Ju Sher (GS) Yuting Lin (GS) Kasey Phillips (GS)

Harvard NSF SOLAR team

Jacob Krich (PD) Justin Song (GS) Man Hong Yung (PD)

irradiate with 100-fs 10 kJ/m² pulses

TRUST

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

R.

absorptance
$$(1 - R_{int} - T_{int})$$

band structure changes: defects and/or impurities

optical hyperdoping puts 2% of sulfur in 200-nm surface layer

open questions

- how do the impurities get incorporated?
- can we use optical hyperdoping for solar cells?

Outline

3

DA

CHEY'S

126

• goals

optimizing dopant profile

1/24/03 9 kJ/m (+ Sam

intermediate band

1.20

interesting properties due to intermediate band

generalize

Outline

11523

3

De

(OIST'S

950 P

• goals

optimizing dopant profile

c/ 200

1/24/03 9 kJ/m cr sam

intermediate band (

Theoretical agenda

- explain enhanced doping
- optimize dopant profile for device design
- design process for optimal dopant profile

why does enhanced doping occur?

physical mechanisms:

- melting and resolidification of thin layer
- sulfur diffusion into liquid silicon
- incorporation into solid during resolidification

why does enhanced doping occur?

mathematical model:

- calculate dynamics of two fields
- temperature T(x,t)
- sulfur concentration c(x,t)

calculation step 1: temperature profile set up by laser

calculation step 1: temperature profile set up by laser

calculation step 2: solid melts, solute incorporated

calculation step 2: solid melts, solute incorporated

melting:

• heat diffusion $T_t = D_{th} T_{xx}$ • energy balance $L_V \dot{h} = [[-\kappa_T T_x]]$

calculation step 2: solid melts, solute incorporated

melting:

• heat diffusion $T_t = D_{th} T_{xx}$ • energy balance $L_V \dot{h} = [[-\kappa_T T_x]]$

incorporation: • solute diffusion $c_t = Dc_{xx}$ • mass balance $[[c]]\dot{h} = [[-D c_x]]$

calculation step 2: solid melts, solute incorporated

melting:

• heat diffusion $T_t = D_{th} T_{xx}$ • energy balance $L_V \dot{h} = [[-\kappa_T T_x]]$

incorporation: • solute diffusion $c_t = Dc_{xx}$ • mass balance $[[c]]\dot{h} = [[-D \ c_x]]$ $T = T_{melt} + mc^L(h) - \mu \dot{h}$

boundary condition critically affects dopant profile

two scenarios
two scenarios

constant concentration

cross-sectional Transmission Electron Microscopy

M. Wall, F. Génin (LLNL)

μm

secondary ion mass spectrometry

appears to be closer to constant flux

Outline

11923

3

De

(OIST'S

950 P

• goals

optimizing dopant profile

C/ 243

1/24/03 9 kJ/m (+ same

intermediate band

what dopant states/bands cause IR absorption?

1 part in 10⁶ sulfur introduces donor states in gap

Janzén et al., Phys. Rev. B 29, 1907 (1984)

absorptance
$$(1 - R_{int} - T_{int})$$

10⁻⁶ sulfur doping

laser-doped S:Si

laser-doped S:Si

laser-doped S:Si

isolate surface layer for Hall measurements

device layer

buried oxide

silicon substrate

isolate surface layer for Hall measurements

device layer buried oxide

silicon substrate

isolate surface layer for Hall measurements

laser doped region

buried oxide

silicon substrate

isolate surface layer for Hall measurements

isolate surface layer for Hall measurements

Hall measurements

transition to metallic behavior at high doping

can we understand this intermediate band

using atomistic modeling?

density of states

Intermediate band

recombination rate

change dopant/substrate combination

What's next?

optimal dopant profile is flat

change incorporation process:

•electrospray

• pulse sequence design

Acknowledgments

