Thermally Managed Z-scan Measurements of Amorphous TiO₂ Films

Christopher C. Evans

J.D.B. Bradley, F. Parsy, K.C. Phillips, R. Senaratne, E. Marti and Eric Mazur Photonics West January 27,2011

Outline

Introduction: amorphous TiO₂ films

Standard z-scan

Thermally managed z-scan

Conclusions and Discussion

Titanium Dioxide

Wide Bandgap: 3.2 eV (387 nm)

Titanium Dioxide

Wide Bandgap: 3.2 eV (387 nm) High index: 2.5

Titanium Dioxide

Wide Bandgap: 3.2 eV (387 nm) High index: 2.5 Excellent for 800 nm: Nonresonant (ultrafast) nonlinearity

Titanium Dioxide

Wide Bandgap: 3.2 eV (387 nm) High index: 2.5 Excellent for 800 nm: Nonresonant (ultrafast) nonlinearity Low two-photon absorption

What is the nonlinearity for TiO₂ near 800 nm?

Z-Scan of Bulk Rutile

Z-Scan of Bulk Rutile

How should we optimize our thin films?

Optimization of thin films

Crystalline Phases: Amorphous Anatase Rutile

Optimization of thin films

Refractive Index

Optimization of thin films

Refractive IndexAmorphous: 2.35Anatase:2.45

Optimization of thin films

Refractive IndexAmorphous: 2.35Anatase:2.45

Guiding Losses Amorphous: 1 dB/cm Anatase: 5 dB/cm

Low loss amorphous TiO₂

Low loss amorphous TiO₂

Deposition Method: Reactive Sputtering Thickness: 2.2 micron Substrate: Fused Silica (500 micron) Guiding Losses: ~1 dB/cm

What is the nonlinearity of amorphous TiO₂?

What is the nonlinearity of amorphous TiO₂?

Are there thermal effects?

Boyd, R. W. Nonlinear optics. 2nd edn

Boyd, R. W. Nonlinear optics. 2nd edn

Boyd, R. W. Nonlinear optics. 2nd edn

Boyd, R. W. Nonlinear optics. 2nd edn

Laser Specifications

Type:Amplified Ti:Sapphire (CPA)Center λ:800 nmPulse Duration:100 fsRepetition Rate:10kHz - 250kHz

Boyd, R. W. Nonlinear optics. 2nd edn

Boyd, R. W. Nonlinear optics. 2nd edn

Boyd, R. W. Nonlinear optics. 2nd edn

Boyd, R. W. Nonlinear optics. 2nd edn

Outline

Introduction: amorphous TiO₂ films

Standard z-scan

Thermally managed z-scan

Conclusions and Discussion

Laser Parameters

w0 (measured): 37 micron

Laser Parameters

w0 (measured): 37 micron
zR (from fitting): 2.1 mm
Approximate M²: 1.8

Laser Parameters

w0 (measured): 37 micron
zR (from fitting): 2.1 mm
Approximate M²: 1.8
Repetition Rate: 10 kHz
Pulse Duration: 100 fs

Laser Parameters

w0 (measured): 37 micron zR (from fitting): 2.1 mm Approximate M²: 1.8 10 kHz **Repetition Rate: Pulse Duration:** 100 fs Max Power: 18 mW 0.08 J/cm² Max Fluence: S parameter: 0.016

What power should we use?

What power should we use?

Reported Damage Threshold: 0.55 J/cm²

Yao, J. et al. Thin Solid Films 516, 1237-1241 (2008).

What power should we use?

Reported Damage Threshold:0.55 J/cm²Our Maximum Fluence:0.08 J/cm²

Yao, J. et al. Thin Solid Films 516, 1237-1241 (2008).
What power should we use?

Reported Damage Threshold:0.55 J/cm²Our Maximum Fluence:0.08 J/cm²Low Power Used:0.002 J/cm²

Yao, J. et al. Thin Solid Films 516, 1237-1241 (2008).

Sample has been changed

What about the closed aperture?

Closed Aperture (CA/OA)

Closed Aperture (CA/OA)

Closed Aperture (CA/OA)

Sample has been changed

What does the sample look like after?

Optical microscopy

Optical microscopy (enhanced)

Optical microscopy (enhanced)

What is the time scale of the darkening?

Timed Exposure (Open Aperture)

Timed Exposure (Open Aperture)

Not stabilized over > 1 hour

Can we still measure the film?

Comparison:

With TiO₂ Film <u>versus</u> Without TiO₂ Film

Fluence used (TiO₂): 36 mJ/cm²

Do the darkened samples show thermal nonlinearities and how can we measure it?

Outline

Introduction: amorphous TiO₂ films

Standard z-scan

Thermally managed z-scan

Conclusions and Discussion

Thermally Managed Z-Scan

transmission

time

Falconieri & Salvetti App. Phys. B, 69, 133-136 (1999).

Thermally Managed Z-Scan

Falconieri & Salvetti App. Phys. B, 69, 133-136 (1999).

Falconieri & Salvetti App. Phys. B, 69, 133-136 (1999).

Falconieri & Salvetti App. Phys. B, 69, 133-136 (1999).

Laser Parameters

w0 (measured):	37 micron
zR (from fitting):	2.1 mm
Approximate M ² :	1.8
Repetition Rate:	250 kHz
Pulse Duration:	100 fs
Power Used:	<u>300 mW</u>
Fluence:	0.06 J/cm ²
S parameter:	0.016

Amorphous film at start of window

Amorphous film at start of window

Amorphous film at end of window

Prefocal Time Dependence 1.10 1.05 1.00 0.95

Prefocal Time Dependence

Prefocal Time Dependence

As-deposited Amorphous Films

As-deposited Amorphous Films

Sensitive to light exposure

As-deposited Amorphous Films

Sensitive to light exposure

Darkening occurs on two time scale: Short: 5.8 minutes Longer: 32 hours

As-deposited Amorphous Films

Sensitive to light exposure

Darkening occurs on two time scale: Short: 5.8 minutes Longer: 32 hours

Does not recover after 12 hours

Darkened Films

Darkened Films

Nonlinearity is within the uncertainty

Darkened Films

Nonlinearity is within the uncertainty

Thermal nonlinearity (dn/dT) is positive

Darkened Films

Nonlinearity is within the uncertainty

Thermal nonlinearity (dn/dT) is positive

Thermal response time is 0.6 ms

Discussion

TiO₂ is a promising nonlinear material

Discussion

TiO₂ is a promising nonlinear material

Amorphous films: Adapted z-scan to measure n₂ Processing to enhance/avoid darkening

Discussion

TiO₂ is a promising nonlinear material

Amorphous films: Adapted z-scan to measure n₂ Processing to enhance/avoid darkening

Darkened films require further study to: Understand process of darkening Explore properties of darkened samples

Acknowledgements

Funding provided by the National Science Foundation

I would like thank:

The Center for Nanoscale Systems Nanoscale Science and Engineering Center

