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Background: femtosecond laser cell transfection

Cell transfection: “infection by transformation”

Introduction of biological material into a cell, resulting in
a modification of its genetic composition



Background: femtosecond laser cell transfection

Cell transfection is central to:
Genetic engineering
Potential gene therapies - DNA, siRNA, etc.

Basic biological research



Background: femtosecond laser cell transfection

Transfection Efficiency Toxicity Throughput
technique
Lipid reagents Medium to High Medium High
Electroporation | Low to Medium High High
Microinjection High Low Low
Fs-laser Medium to High Low Low

transfection
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Linear vs. nonlinear absorption
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Background: femtosecond laser cell transfection

Linear vs. nonlinear absorption
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Background: femtosecond laser cell transfection
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Transfection of cells
with near-100% efficiency

800nm, 100fs,

1nJ, 8OMHz Excellent efficiency, but terrible

throughput!

U. Tirlapur and K. Konig, Nature 418, 290-291 (2002)
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Use sub-wavelength focusing properties of plasmonic
nanostructures to replace high-NA focusing.
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Plasmonic substrates

The choice of plasmonic substrate has specific requirements:

1. Field enhancement must be in close proximity to
cell membrane.

2. Field enhancing regions (areas of damage) must be
accessible to DNA, RNA, etc. in surrounding solution.

3. Substrate fabrication method must be scalable in size.



Plasmonic substrates

Photolithography + KOH anisotropic etching




Plasmonic substrates

Substrate: template-stripped gold pyramid array

Template stripping exploits poor adhesion of noble metals on SiO,

Glass coverslip

L A 1

UV-curable /‘/ 1\ ~ 30nm Au

polyurethane

1. UV cure
2. Peel gently

P. Nagpal et al. Science 325, 594 (2009)



Plasmonic substrates

30nm Au on polyurethane



Plasmonic substrates

30nm Au on polyurethane



Plasmonic substrates

Biocompatibility of pyramidal substrates
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Plasmonic substrates

Where is the field enhancement?



Plasmonic substrates

Where is the field enhancement?

Two-photon absorption polymerization is an intensity-dependent
nonlinear effect. Polymerization occurs where the field is most intense.

Two-photon
polymerization resin
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Two-photon absorption polymerization is an intensity-dependent
nonlinear effect. Polymerization occurs where the field is most intense.

after washing in ethanol



Plasmonic substrates

Where is the field enhancement?

Two-photon absorption polymerization is an intensity-dependent
nonlinear effect. Polymerization occurs where the field is most intense.




Plasmon-enhanced transfection

Plasmon-enhanced cell perforation

Exposing substrate with femtosecond pulse train allows cellular
introduction of lipid-sensitive dye (FM1-43) only on pyramidal region.

Cell line:
Human thymus

unexposed

Laser spot size diameter ~ 30 um



Plasmon-enhanced transfection

Transfection using rhodamine-labeled siRNA

exposed unexposed

Cell line:
NM2GFP (ATCC)

Image overlay:
Blue — brightfield
Green — GFP fluorescence

Red — Rhodamine
fluorescence
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FACS transfection analysis
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FACS transfection analysis

black - original population
red - non specific siRNA

green - GFP siRNA

purple - HiPerfect transfection
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FACS transfection analysis
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FACS transfection analysis

black - original population
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Conclusion

Scaled ultrafast laser cell transfection to
biologically-relevant numbers using large area
plasmonic substrates.

Demonstrated sequence-specific knockdown of GFP
expression in cells.

Further quantitation of cell viability and transfection efficiency
must be performed.
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Questions, comments, ideas?

Email: ediebold@post.harvard.edu



Background: femtosecond laser cell transfection
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