# Impact of Peer Instruction on underrepresented groups

Catherine H. Crouch<sup>‡</sup>

Jessica Watkins,\* Mercedes Lorenzo,† and Eric Mazur

**Department of Physics, Harvard University** 

Department of Physics and Astronomy, Swarthmore College
 \*Physics Education Research Group, University of Maryland
 †IES Universidad Laboral, Albacete, Spain







#### Diversity and Peer Instruction

Key question: Does Peer Instruction serve underrepresented groups well?

- Conceptual inventories
- □ Grades\*
- □ Retention\*

Many other questions could be asked!





#### Pedagogical best practices for girls

Research (both K-12 and higher ed) suggests:

- Actively involve students
- Promote cooperative learning/decrease competitiveness
- Emphasize deep understanding
- Build on prior knowledge and experiences
- Provide real-world examples/social context

... These practices generally benefit all students



For a review see Brotman and Moore (J. Res. Sci. Teach, 2008).



#### Best practices for URM

- Many of the same strategies as for girls
- Combat isolation: provide structured opportunities for group work
- Provide active academic mentoring



See for example Treisman (Coll. Math. J., 1992); Maton et al (J. Res. Sci. Teach, 2000).



## Do female students achieve at the level of male students with Peer Instruction?





## Pedagogy and gender

- □ Calculus-based introductory mechanics for nonmajors at Harvard University, 1990 - 1997
- □ 150-200 students each year, 30-40% women
- Administered Force Concept Inventory as preand post-test





## First study: pedagogy and gender

#### Three pedagogies:

- □ Traditional (passive lecturing)
- Partially interactive (IE1): Peer Instruction in class traditional discussion section





☐ Fully interactive (IE2):

Peer Instruction in class

Tutorials and cooperative groups in section

How does male and female performance compare?





## Results: FCI pretest



Female students start out behind





## Results: FCI posttest



Fully interactive instruction appears to eliminate gap





## Results: algebra-based



Algebra-based (IE2): females gained more BUT lower posttest scores, slightly smaller normalized gains





#### How do we interpret this?

- Many FCI measures
  - absolute gain
  - normalized gain
  - absolute posttest score
- What do we really want to know?
- □ Regression analysis: control for background





### Problem: high posttest scores

□ Non-normal posttest score distribution: ceiling effect, invalidates linear regression



Solution: divide into high and low scorers



## High/low scores: logistic regression

- ☐ Find probability of scoring >80%
- IE2: equal male/female odds accounting for background







## High/low with algebra-based

- More male high scorers
- Background accounts for much but not all of difference







#### Exam scores and grades

- ☐ FCI analysis still murky (ceiling effect)
- Exam scores and grades matter!
- Normally distributed; can use linear regression





### Exam scores and grades: gender



Males earn slightly higher exam scores (~4-5%) and course grades (~2-3%) than females Gap is entirely attributable to background



### Electricity and magnetism: gender





Exam, grade gaps attributable to background Females earn *better* grades by background! Small CSEM gap (2 points out of 32)

#### Gender and Peer Instruction

- ☐ Females have weaker average preparation (FCI pretest)
- All students show greatest FCI gains from PI/ IE2
- Females do as well on exams, grades, and CSEM as males with the same background (FCI murky)





#### University of Colorado results

- Also use PI (both with and without other innovations)
- □ Larger class (400-600), smaller fraction female
- □ Average pretest score is lower
- Broadly consistent conclusions about gender effects in mechanics

Pollock *et al*, PRST-PER 3, 010107 (2007) Kost *et al*, PRST-PER 5, 010101 (2009) Kost *et al*, PERC Proceedings (2009).





### UC: FCME and gender

- Same absolute gains by males and females
- Posttest gender gap often smaller, but never zero
- □ PI/IE2 implementation probably matters







## UC: FCME, gender, and background

#### Posttest gap is accounted for by background







#### UC: grades and gender

- Over seven semesters, females earn very slightly lower grades (0.11 points on 4 point scale)
- □ This difference can be accounted for by background (Kost, personal communication)
- □ Differences in individual semesters range from 0.04 to 0.17 points (not significant)
- Males' exam scores are higher by ~5%; females' homework scores are higher by ~5%





#### Gender and Peer Instruction

Bottom line: PI appears to serve female students as well as male students, but does not overcome starting gaps

Implementation is probably important!

Consistent with University of Minnesota study of FCI and grades





# Do underrepresented minorities achieve at the level of majority students with Peer Instruction?





### FCI high/low with URM

□ Calc-based shows no gap after controlling for background, slight gap persists in alg-based







### Exam scores and grades: URM



URM earn appreciably lower exam scores (8-13%) and grades (3-8%)



Gap is greater than background predicts



### Electricity and magnetism: URM









#### **URM** and Peer Instruction

#### Key findings:

- □ Females and URM have weaker average preparation (FCI pretest)
- ☐ *All* students show greater FCI gains from PI
- Females do as well on exams, grades, and CSEM as males with the same background (FCI murky)
- □ In this population, URM do as well on CSEM, but underperform on exams and grades





## Why the URM grade gap?

- URM homework scores (quantitative problem solving) are lower
- URM students may not be collaborating as much
- Stereotype threat on high-stakes assessments?





## Does Peer Instruction affect retention of underrepresented groups in science majors?





#### Retention: Harvard calc-based





PI halves the rate of switching out of science for all groups

#### Retention





PI halves the rate of switching out of science for all groups

#### Retention

Study of prospective engineers: one good early course confirmed choice to pursue engineering

PI course might play that role?





#### Other questions for other talks

How does implementation affect underrepresented groups?

Does PI affect attitudes and confidence differently for males and females?





#### Conclusions

- Females/URM have weaker preparation
- Although PI/IE2 produces greater gains for all students, differences persist
- Gender gaps attributable to background
  - -> PI appears to serve females as well as males
  - -> pay attention to implementation
- URM students underperform in grades even accounting for background
  - -> requires further study
- PI courses improve retention for all groups







#### Thanks to....

Jessica Watkins

PER@Colorado (especially Lauren Kost, Noah Finkelstein, and Steven Pollock)

University of Minnesota PER (especially Jen Docktor and Ken Heller)

NSF for funding

New results from Kost and Watkins: Session DH, Pavilion West, 5:40 – 6 p.m. today!





