## The Tyranny of the Lecture




Think of something you are really good at

Think of something you are really good at

## (1) blc.learningcatalytics.com <br> (2) sign up <br> (3) ID 123456

Now think how you became good at it

(1) blc.learningcatalytics.com<br>(2) sign up<br>(3) ID 123456



(1) lecture


(1) lecture
(2) PI
(3) PI 2.0

(1) lecture
(2) PI
(3) PI 2.0

(1) lecture


## (1) lecture

## What happens in a leature?

(1) lecture

(1) lecture

(1) lecture

(1) lecture

(1) lecture

(1) lecture
(1) lecture


## (1) lecture <br> (2) PI

1. transfer of information
(1) lecture

# 1. transfer of information 

2. assimilation of that information
(1) lecture
(2) PI
3. transfer of information (in class)

## 2. assimilation of that information

## 1. transfer of information (in class)

2. assimilation of that information (out of class)

## Should focius nan THIS!

1. transfer of information $>$
2. assimilation of that information (out of class)
(1) lecture
(2) PI
3. transfer of information (in class)
4. assimilation of that information (out of class)
5. transfer of information (out of class)
6. assimilation of that information (in class)
7. assimilation of that information (in class)
(1) lecture
(2) PI


(1) lecture
(2) PI

1 lecture
(2) PI
(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI


(1) lecture
(2) PI





(1) lecture
(2) PI

## thermal expansion

(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

Consider a rectangular metal plate with a circular hole in it.


Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the how 1. increasencin IN.


Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.
consider atoms at rim of hole

(1) lecture
(2) PI
(1) lecture
(2) PI

1 lecture
(2) PI

## Higher learmis

(1) lecture
(2) PI
Betters
(1) lecture
(2) PI

feedback
(1) lecture
(2) PI
(3) PI 2.0


1991
(1) lecture
(2) PI
(3) PI 2.0


## (1) lecture

(2) PI
(3) PI 2.0

(1) lecture
(2) PI
(3) PI 2.0

ioclicker


(1) lecture
(2) PI
(3) PI 2.0

How do l...

- design good questions?
- optimize the discussions?
- manage time?
(14) $2 B$ B
iclicker
(1) lecture
(2) PI
(3) PI 2.0


## learning|catalytics

## learning |catalytics



Gary King


Brian Lukoff


Eric Mazur
(1) lecture
(2) PI
(3) PI 2.0

Use intelligent algorithms and data analytics to...

- improve questioning
- manage discussions
- facilitate time management/flow
par fixed rate
a. A 15 -year fised rate montgage at $12 \%$

2. The biggest factor that leads Americ
quality of craftsmanship
a. High labor costs
b. Lower
3. Which of Tiabilities + Owners ${ }^{2}$ equity
a. $\quad$ Assets $\quad$ Liabilities $=$ Assets + onets + Liabilities
b. Lianters equity $=A$ Liabitities
b. Lower labor costs bigation costs
extensible plug-in architecture for question types
(1) lecture
(2) PI
(3) Pl 2.0

## Sample question types:

- direction
- expression
- long answer, short answer, word cloud (fill in text)
- multiple-choice, many-choice
- numerical (enter a number)
- ranking
- region (select point on image)
- sketch


## Sample question types:

## - direction

pere mexpres the accounting equation for a

Effed expression
Which of long answers short answer, word cloud (fin lin text)
n multiple choice, many-choice

- numerical (enter anumber)
- ranking

To order m

- region (select point on image)
- sketch

In order to start an online
(1) lecture
(2) PI
(3) PI 2.0


## (1) blc.learningcatalytics.com (2) sign up (3) ID 123456


(1) blc.learningcatalytics.com (2) sign up (3) ID 123456

(1) blc.learningcatalytics.com (2) sign up (3) ID 123456


## Sample question types: <br> The biggest

- region (select point on image)
- sketch


## learning catalytics

## Courses Participate Review Classrooms Account Institutions Users About

## transformations of parabolas

\& Back to all lectures
E Stop session Fill Review results
Show floating session ID * Edit
current session: 773885 | 9 students

4

$$
\begin{array}{|l|l|l|l|l|}
\hline \text { Jump to } \mathbf{V} & 1 & 2 & 3 & 4 \\
\hline
\end{array}
$$



Round 1 \& Fill
9 responses


## Sample question types:

- direction
- expression
- long answer, shoin é ivary cluûd (fill in text)
- m trive nof m 1 Jcnoice
- $n$ L © ${ }^{\text {a }}$ (erier a number)
- ranking
- region (select point on image)
- sketch

(1) lecture
(2) PI
(3) PI 2.0


# human interartion 

(1) lecture
(2) PI
(3) Pl 2.0


(4)


## (1) lecture

(2) PI
(3) PI 2.0


## (1) lecture

(2) PI
(3) Pl 2.0

## (1) lecture



(4)

C. $35 \%$
D. $0 \%$
E. $0 \%$
positive
zero
9. negative
ration induced in the sphere
D. depends on the path taken from knowing mo


## (1) lecture

(2) PI
(3) Pl 2.0

## let system manage pairing

(1) lecture
(2) PI
(3) PI 2.0

## Carrier

A positively charged rod is held near a neutral conducing sphere as tattle is moved from point positively charged patrice speed. The mechanical $A$ to point $B$ al con se to cause this motion is

Please discuss your response with:

- Brian Lukoll (to your lett)
* 1 am talking to this parsonjegepte


## (1) lecture

(2) PI
(3) PI 2.0


## (1) lecture

(2) PI
(3) PI 2.0




(1) lecture
(2) PI
(3) Pl 2.0

(1) lecture
(2) PI
(3) Pl 2.0

(1) lecture
(2) PI
(3) PI 2.0

1 lecture


## (1) lecture

(2) PI
(3) PI 2.0




## the future is here!

(1) lecture
(2) PI
(3) Pl 2.0

## System currently in use at:

- Harvard University
- very large state school
- high school
- medium-size research university

Many thanks to:

Computer Vision
Prof. Todd Zickler
Dr. Laura Tucker Dr. Ruonan Li Ely Spears
Parker Porfolio

## Education Research

Prof. Alvaro Neves
Prof. James Fraser Dr. Julie Schell Kelly Miller Jason Dowd

Learning Catalytics

Prof. Rachel Scherr Ryan Smith

Prof. Gary King
Dr. Brian Lukoff

## Funding:

## National Science Foundation

for a copy of this presentation:

## mazur.harvard.edu

## learningcatalytics.com


(1) lecture
(2) PI
(3) PI 2.0

