

Propagation of EM wave through medium

Governed by wave equation

 $\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$

Solution:

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n}$$

С

where

$$\vec{E} = \vec{E}_o e^{i(kx - \omega l)}$$

In nonferromagnetic media $\mu \approx 1$, and so $n \approx \sqrt{\epsilon}$.

In dispersive media $n = n(\omega)$.

Propagation of EM wave through medium

Dielectric constant measures increase in capacitance

$$\boldsymbol{\epsilon} = \frac{C_d}{C_o}$$

Propagation of EM wave through medium

In vacuum:

$$f\lambda = \frac{\omega}{k} = c \qquad \Rightarrow \qquad \omega = c k$$

Dielectric function

Bound electrons

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

$$F_{driving} = -eE = -eE_o e^{-i\omega t}$$

Equation of motion:

$$m\frac{d^2x}{dt^2} = \sum F$$

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} + m\omega_o^2 x = -eE$$

Bound electrons

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t} \qquad x_o = -\frac{e}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o$$

Oscillating dipole

$$p(t) = -ex(t) = \frac{e^2}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o e^{-i\omega t}$$

Polarization

$$P(t) = \left(\frac{Ne^2}{m}\right) \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega} E(t) \equiv \epsilon_o \chi_e E(t)$$

Bound electrons

Dielectric function

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\epsilon_o m} \sum_j \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

Free electrons

No binding:

 $F_{binding} \approx 0$

Equation of motion: $m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -eE$

Solution:

$$x(t) = \frac{e}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$$
 (no resonance)

Low frequency ($\omega \ll \gamma$) \Rightarrow current generated

$$J = -Ne \frac{dx}{dt} = \frac{Ne^2}{m} \frac{1}{\gamma - i\omega} E \approx \frac{Ne^2}{m\gamma} E \equiv \sigma E$$

Free electrons

 $\omega \gg \gamma$: σ complex $\Rightarrow J$ out of phase with *E*

Dipole:

$$p(t) = -ex(t) = -\frac{e^2}{m}\frac{1}{\omega^2 + i\gamma\omega}E(t)$$

Polarization:

$$P(t) = -\frac{Ne^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t) \equiv \epsilon_o \chi_e E(t)$$

Dielectric function:

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Free electrons

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Little damping: $\gamma \approx 0 \Rightarrow \epsilon'' = 0$

$$\epsilon'(\omega) = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2} \equiv 1 - \frac{\omega_p^2}{\omega^2}$$

Free electrons

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Add damping:

 $\gamma \lesssim \omega_p$

Free electrons

Plasma acts like a high-pass filter

Free electrons

Plasma acts like a high-pass filter

log <i>N</i> (cm⁻³)	ω_{p} (rad s ⁻¹)	$\lambda_{_p}$
22	6 x 10 ¹⁵	330 nm
18	6 x 10 ¹³	33 µm
14	6 x 10 ¹¹	3.3 mm
10	6 x 10 ⁹	0.33 m

Pulse dispersion

Consider two propagating waves:

$$y_1 = A \sin(k_1 x - \omega_1 t)$$
 and $y_2 = A \sin(k_2 x - \omega_2 t)$

propagating at speeds

$$v_1 = \frac{\omega_1}{k_1} = f_1 \lambda_1$$
 and $v_2 = \frac{\omega_2}{k_2} = f_2 \lambda_2$

Superposition:

$$y = A[\sin(k_1x - \omega_1t) + \sin(k_2x - \omega_2t)]$$

$$\sin \alpha + \sin \beta = 2\cos\left(\frac{\alpha - \beta}{2}\right)\sin\left(\frac{\alpha + \beta}{2}\right)$$

Pulse dispersion

$$y = 2A \cos \frac{1}{2} [(k_1 - k_2)x - (\omega_1 - \omega_2)t] \sin \left[\frac{k_1 + k_2}{2}x - \frac{\omega_1 + \omega_2}{2}t\right]$$

Let: $k_1 - k_2 \equiv \Delta k$ and $\omega_1 - \omega_2 \equiv \Delta \omega$

$$\frac{k_1+k_2}{2} \equiv k$$
 and $\frac{\omega_1+\omega_2}{2} \equiv \omega$

and so:

$$y = 2A \cos \frac{1}{2}(x\Delta k - t\Delta \omega) \sin (kx - \omega t)$$

traveling sine wave, with amplitude modulation.

Pulse dispersion

$$y = 2A \cos \frac{1}{2}(x\Delta k - t\Delta \omega) \sin (kx - \omega t)$$

At *t* = 0:

 $y = 2A \cos \frac{1}{2}(x\Delta k) \sin (kx)$ envelope carrier

Pulse dispersion

$$y = 2A \cos \frac{1}{2}(x\Delta k - t\Delta \omega) \sin (kx - \omega t)$$

speed of carrier ('phase velocity'):

 $v_p = \frac{\omega}{k} = f\lambda$

speed of envelope ('group velocity'):

$$v_g = \frac{\Delta\omega}{\Delta k} = \frac{d\omega}{dk}$$

Pulse dispersion

$$y = 2A \cos \frac{1}{2}(x\Delta k - t\Delta \omega) \sin (kx - \omega t)$$

If no dispersion

$$v_p = \frac{\omega_1}{k_1} = \frac{\omega_2}{k_2}$$

group velocity:

$$v_g = \frac{\Delta\omega}{\Delta k} = \frac{\omega_1 - \omega_2}{k_1 - k_2} = \frac{\omega_1/k_1 - \omega_2/k_1}{1 - k_2/k_1} = \frac{v_p - \omega_2/k_1}{1 - k_2/k_1}$$

$$v_g = \frac{v_p - \omega_2/k_2(k_2/k_1)}{1 - k_2/k_1} = v_p \frac{1 - k_2/k_1}{1 - k_2/k_1} = v_p$$

Pulse dispersion

$$y = 2A \cos \frac{1}{2}(x\Delta k - t\Delta \omega) \sin (kx - \omega t)$$

If no dispersion

$$v_p = \frac{\omega_1}{k_1} = \frac{\omega_2}{k_2}$$

group and phase velocities are the same:

 $v_g = v_p$

and so the envelope and carrier travel together

Pulse dispersion

$$y = 2A \cos \frac{1}{2}(x\Delta k - t\Delta \omega) \sin (kx - \omega t)$$

Types of dispersion:

$$\frac{dn}{d\omega} > 0$$
normal dispersion $v_g < v_p$ n $\frac{dn}{d\omega} = 0$ no dispersion $v_g = v_p$ $\frac{dn}{d\omega} < 0$ anomalous dispersion $v_g > v_p$

Pulse dispersion medium causes pulse to stretch

Pulse dispersion compensation

Pulse dispersion

Write dispersion as Taylor series:

$$\omega(k) = \omega_o + \left(\frac{d\omega}{dk}\right)_{k=k_o} (k-k_o) + \frac{1}{2} \left(\frac{d^2\omega}{dk^2}\right)_{k=k_o} (k-k_o)^2$$

let

$$u \equiv \left(rac{d\omega}{dk}
ight)_{k=k_o} \hspace{0.5cm} ext{and} \hspace{0.5cm} w \equiv \left(rac{d^2\omega}{dk^2}
ight)_{k=k_o}$$

group velocity:

$$v_g = \frac{d\omega}{dk} = u + wk$$

if w = 0, then group velocity and pulse shape constant!

Pulse dispersion compensation

Nonlinear optics

Linear optics:

 $\vec{P} = \chi \vec{E}$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

and so:

$$P = P^{(1)} + P^{(2)} + P^{(3)} + \dots$$

$$P^{(2)} \approx P^{(1)}$$
 when $E = E_{at} \approx \frac{e}{a}$, and so $\chi^{(n)} \approx \frac{\chi^{(1)}}{E_{at}^{n-1}}$

Nonlinear optics

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

But even terms disappear in media with inversion symmetry!

$$\vec{P}^{(2)} = \chi^{(2)} : \vec{E}\vec{E}$$

Invert all vectors:

$$-\vec{P}^{(2)} = \chi^{(2)} : (-\vec{E})(-\vec{E})$$

and so $\chi^{(2)} = -\chi^{(2)} = 0$.

Nonlinear optics

Consider oscillating electric field:

$$E(t) = E e^{i\omega t} + \text{c.c.}$$

Second-order polarization:

$$P^{(2)}(t) = \chi^{(2)} E^2(t) = \frac{1}{2} \chi^{(2)} E E^* + \frac{1}{4} [\chi^{(2)} E^2 e^{-\frac{1}{2\omega}} + \text{c.c.}]$$

Physical interpretation:

Nonlinear optics

Can also cause frequency mixing! Let

$$E(t) = E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t}$$

Second-order polarization will contain terms with

 $2\omega_1$ (SHG), $2\omega_2$ (SHG), $\omega_1 + \omega_2$ (SFG), $\omega_1 - \omega_2$ (DFG)

Physical interpretation:

Nonlinear optics

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Intensity dependent term at fundamental frequency:

$$P^{(3)}(t) = \chi^{(3)} E(t) E^*(t) E(t) = \chi^{(3)} I(t) E(t)$$

and so

o
$$P = P^{(1)} + P^{(3)} = (\chi^{(1)} + \chi^{(3)}I)E \equiv \chi_{eff}E$$

$$n = \sqrt{\epsilon} = \sqrt{1 + \chi_{eff}} \approx \sqrt{1 + \chi^{(1)}} + \frac{1}{2} \frac{\chi^{(3)} I}{\sqrt{1 + \chi^{(1)}}} = n_o + n_2 I$$

Nonlinear optics

Intensity-dependent index of refraction:

$$n = n_o + n_2 I$$

Nonlinear optics Intensity-dependent index of refraction: $n = n_o + n_2 I$ v_{p_1} v_{p_1} v_{p_1}

Nonlinear optics

but susceptibility is complex!

susceptibility	real part	imaginary part
linear	refraction	absorption
nonlinear	SHG, SFG, DFG, THG,	multiphoton absorption

 $\alpha = \alpha_o + \beta I + \gamma I^2 + \dots$

Waveguiding two crossed planar waves...

...satisfying boundary conditions for planar-mirror waveguide

Waveguiding

transverse standing wave, traveling along axis

boundary conditions only satisfied for certain θ

standing wave in y-direction, traveling in z-direction

self consistency:

$$AC - AB = 2d\sin\theta = m\lambda$$
 $(m = 1, 2,)$

SO:

 $\sin\theta_m = m \, \frac{\lambda}{2d}$

self consistency:

$$AC - AB = 2d\sin\theta = m\lambda$$
 $(m = 1, 2,)$

 $\sin\theta_m = m \, \frac{\lambda}{2d}$

SO:

self consistency:

$$AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$$

so:

$$\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$$

Waveguiding

number of modes:

 $M = \frac{2d}{\lambda}$

 $AC - AB = 2d\sin\theta - \frac{\varphi_r}{\pi}\lambda = m\lambda \quad (m = 0, 1, 2...)$

 $\tan\left(\frac{\pi d}{\lambda}\sin\theta - m\frac{\pi}{2}\right) = \left(\frac{\sin^2(\pi/2 - \theta_c)}{\sin^2\theta} - 1\right)^{1/2}$

so:

number of modes:

$$M \doteq \frac{\sin(\pi/2 - \theta_c)}{\lambda/2d}$$

or:

 $M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$

Waveguiding

propagation constant of guided wave:

$$eta_m^2 = k^2 - k_y^2 = k^2 - rac{m^2 \pi^2}{d^2}$$

group velocity:

$$v_m = c \cos \theta_n$$

Waveguiding

single mode condition for 600-nm light:

planar mirror

$$M = \frac{2d}{\lambda}$$
 300 < -

0 < d < 600 nm

dielectric

 $M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$

$$d < 268 \text{ nm}$$

Waveguiding

Vector potential obeys:

$$\nabla^2 \vec{A} + \omega^2 \mu_o \epsilon \vec{A} = 0$$

Substituting

$$\vec{A} = \hat{y}u(x,y)e^{-i\beta}$$

yields:

$$\nabla_T^2 u + \left[-\beta^2 + \omega^2 \mu \epsilon(r)\right] u = 0$$

Compare to time-independent Schrödinger equation:

$$\nabla^2 \psi + \frac{2m}{\hbar^2} [E - V(r)] \psi = 0$$

Waveguiding

single mode condition for 600-nm light:

$$M \doteq 2 \frac{d}{\lambda} (n_1^2 - n_2^2)^{1/2}$$

without cladding:

d < 268 nm

Add cladding with 0.4% index difference:

 $d < 5 \ \mu m$

Nanowire fabrication

two-step drawing process

Specifications

diameter D:	down to 20 nm
length <i>L</i> :	up to 90 mm

diameter uniformity $\Delta D/L$:

up to 10⁶ 2 x 10⁻⁶

Nature, 426, 816 (2003)

aspect ratio *D*/*L*:

Poynting vector profile for 800-nm nanowire

Poynting vector profile for 800-nm nanowire

Optical properties

Poynting vector profile for 600-nm nanowire

Optical properties

Poynting vector profile for 500-nm nanowire

Optical properties

Poynting vector profile for 400-nm nanowire

Poynting vector profile for 200-nm nanowire

Waveguiding

fraction of power carried in core

Optical properties

coupling light between nanowires

virtually no loss through 5 μ m corner!

Manipulating light at the nanoscale

Nanoletters, 5, 259 (2005)

Manipulating light at the nanoscale

Points to keep in mind:

- low-loss guiding
- convenient evanescent coupling
- attached to ordinary fiber

Outline

- propagation of pulses
- nonlinear optics
- nanoscale optics
- nonlinear optics at the nanoscale

Supercontinuum generation

strong confinement \longrightarrow high intensity

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

Supercontinuum generation

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

waveguide dispersion

Optics Express, 12, 1025 (2004)

Supercontinuum generation

Optics Express, 12, 1025 (2004)

Supercontinuum generation

nanowire continuum generation

Optics Express, 14, 9408 (2006)

nanowire continuum generation

Optics Express, 14, 9408 (2006)

Supercontinuum generation

nanowire continuum generation

Optics Express, 14, 9408 (2006)

Supercontinuum generation

800

1000

Optics Express, 14, 9408 (2006)

nanowire continuum generation

Optics Express, 14, 9408 (2006)

Supercontinuum generation

- nanojoule nonlinear optics
- optimum diameter for silica 500-600 nm
- low dispersion

Supercontinuum generation

Optical logic gates

nanowire Sagnac interferometer

Manipulating light at the nanoscale

accumulated phase:

$$\phi = k_o nL$$

nonlinear index:

$$n = n_o + n_2 I = n_o + n_2 \frac{P_i}{A_{eff}}$$

nonlinear parameter:

$$\gamma = n_2 \frac{k_o}{A_{ef}}$$

Manipulating light at the nanoscale

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

Optical logic gates

nonlinear nanogate

Optical logic gates

universal NAND gate

Optical logic gates

Optical logic gates

very preliminary data

Optical logic gates need a different approach! • lithographic fabrication • greater index • greater nonlinearity

Optical logic gates

TiO₂ properties

large nonlinearity	30x silica
high index of refraction	2.4
wide bandgap	3.1 eV
low two-photon absorption	> 800 nm
effective nonlinearity	50,000 W ⁻¹ km ⁻¹

Summary

- several nanodevices demonstrated
- large γ permits miniature Sagnac loops
- switching energy \approx 100 pJ

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur.harvard.edu

eric_mazur