Interactive learning:
 Technology in the classroom

Interactive learning:
 Technology in the classroom

1 LCatalytics.com

Interactive learning:
 Technology in the classroom

1 LCatalytics.com 2 sign up code DEMO

Interactive learning:
 Technology in the classroom

1) LCatalytics.com 2 sign up code DEMO 3 ID 1234567

Interactive learning:
 Technology in the classroom

1 LCatalytics.com 2 sign up code DEMO 3 ID 1234567

Think of something you are really good at

Think of something you are really good at

(1) LCatalytics.com (2) sign up code DEMO 3 ID 1234567

Now think how you became good at it

Class session: 123456

Now describe in a couple of words how you became good at whatever it is you entered in the previous question.

Round 1

doing
lots working good
through others
experience listening $_{\text {learned }}$
trial time people years being
error parents

(1) education

(1) education
(2) PI

(1) education
(2) PI
(3) PI 2.0

(1) education
(2) PI
(3) PI 2.0

(1) education

(1) education

(1) education

What happens in a lesture?

(1) education

(1) education

(1) education

(1) education

(1) education

(1) education
(1) lecture

(1) education
 (2) PI

1. transfer of information
(1) education
(2) PI

1. transfer of information

2. assimilation of that information
3. transfer of information (in class)

2. assimilation of that information

1. transfer of information (in class)

2. assimilation of that information (out of class)

Should focius nan THIS!

1. transfer of information $>$
2. assimilation of that information (out of class)
3. transfer of information (in class)
4. assimilation of that information (out of class)
5. transfer of information (out of class)
6. assimilation of that information (in class)

1. transfer of information (out of class)

2. assimilation of that information (in class)

(1) education
(2) PI

(1) education
(2) PI

(1) education
(2) PI

(1) education
(2) PI

(1) lecture
(2) PI

(1) education
(2) PI
thermal expansion
1) LCatalytics.com 2 sign up code DEMO 3 ID 1234567

(1) LCatalytics.com 2 sign up code DEMO 3 ID 1234567

(1) LCatalytics.com 2 sign up code DEMO 3 ID 1234567

(1) LCatalytics.com 2 sign up code DEMO 3 ID 1234567

Consider a rectangular metal plate with a circular hole in it.

1) LCatalytics.com 2 sign up code DEMO 3 ID 1234567

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hot

1. increasec.a 3. Dic thestan! 1

(1) LCatalytics.com (2) sign up code DEMO 3 ID 1234567

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.
consider atoms at rim of hole

(1) education
(2) PI

(1) education
(2) PI
(1) education
(2) PI

Higher learn

(1) education
(2) PI

(1) education
(2) PI
feedback
(1) education
(2) PI
(3) PI 2.0

1991

(1) education
(2) PI
(3) PI 2.0

(1) education

(2) PI
(3) PI 2.0

(1) education
(2) PI
(3) Pl 2.0

ioclicker

(1) education
(2) PI
(3) PI 2.0

How do I...

- design good questions?
- optimize the discussions?
- manage time?

Use intelligent algorithms and data analytics to...

- improve questioning
- manage discussions
- facilitate time management/flow
par fixed rate
a. A 15 -year fixed rate mortgage at 12%
quality of craftsmanship
a. High labor costs
c. Decreased transportation costs
b.

2. India 15 .
a. \quad Assets $=$ Liabilities $=$ Assets + Owners' eq
b. Liabilities $=$ owner equity $=$ Assets + Liabilities
c. \quad Revenue $=$ Assets - Liabilities
a. power quictbouts
b. Peoplesoft
d. Excel
3. In order to start an line
bigher quality of cratsmanship labor costs
b. Lower lation costs
c. Decreased transportatems
d. Effective legal system
extensible plug-in architecture for question types
d. Revenue $=$ Assels
4. In order to present a business plan to a group of potential investors:
a. powerpoint
b. Quickooks
c. peoplesoft
d. Excel

Sample question types:

- direction
- expression
- long answer, short answer, word cloud (fill in text)
- multiple-choice, many-choice
- numerical (enter a number)
- ranking
- region (select point on image)
- sketch
- highlight passage

Sample question types:

Higher quality costs ation costs

- direction
- long answer, short answer, word cloud (fill in text)
omultiple-choice, many-choice
- numerical (enter a number)
- ranking
- region (select point on image)
- sketch
- highlight passage

learning catalytics
 Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

2. word cloud Now describe in a couple of words how you became good at whatever it is you entered in the previous
 Seliver Fill Show all results

 question.
learning catalytics

learning catalytics

Sample question types:

c. Decrear exegal syiossioin summarizes the accounting equation for a sole propietorsuif

Hiigher quar octs

- long answere short answer, word cloud (fillin text)
whultipfe-choice, many-choice
- numerical (enter a number)
- ranking
tho order men
- region (select point on image)
- sketch
- highlight passage

learning catalytics
 Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

learning catalytics

learning catalytics

Sample question types:

\square

- direction
- multiple choice, many-choice
- numerical (enter anumber)
- ranking
- region (select point on image)
- sketch
- highlight passage

(1) blc.learningcatalytics.com (2) sign up (3) ID 1234567

learning catalytics
 Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

4. direction This image shows Oahu as seen from the Space Shuttle. The image provides several clues about the direction of Deliver Fhili Show all results prevailing winds in Oahu. Indicate this direction by drawing an arrow on your screen.

learning catalytics

learning catalytics

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

```
optics i
\(\uparrow\) Back to all lectures
```



``` Stop session Fill Review results
```

```Seat map Show floating session ID
\(2 \quad 3\) 4 5 6 \begin{tabular}{|l|l|l|}
\hline 7 & 8 & 9
\end{tabular} 10
11
12 13 14 15
4. direction

Light enters horizontally into the combination of two perpendicular mirrors as shown below.


Indicate the direction of the incident light after it reflects off of both mirrors.

\section*{learning catalytics}


\section*{learning catalytics}


\section*{learning catalytics}


\section*{Sample question types:}
c. Effed expression summarizes the acc er mich
direction

Which of long answer short answer, word cloud (fin lin text)
wimultiple-choice, many-choice
- numerical (enter anumber)
- region (select point on image)
- sketch
- highlight passage

\section*{}
Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

\section*{arlington school district}
current session: 48222|24 students
\(母\) Back to all lectures \(\square\) Stop session Fill Review results Show floating session ID 㐘 Edit \(\mathbb{Z}\) Delete
(4)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Jump to \(\boldsymbol{\nabla}\) & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}
5. region

\section*{Where is Tanzania?}
* Stop delivery

Deliver again
Assign groups Fhow all results

(2) PI
(3) PI 2.0

\section*{}
Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

\section*{arlington school district}
\(६\) Back to all lectures \(\square\) Stop session Fill Review results
(4)

Show floating session ID *is Edit
\begin{tabular}{|l|l|l|l|l|l|}
\hline Jump to \(\nabla\) & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}
current session: 48222 | 24 students Delete
\(\qquad\)
5. region Where is Tanzania?
\& Stop delivery \(Q\) Deliver again Assign groups Fhow all results


Round 1 is fill
24 responses, \(75 \%\) correct

(2) PI
(3) PI 2.0

\section*{Sample question types:}
c. Effed expression summarizes the acc er mich
direction

Which of long answer short answer, word cloud (fin lin text)
wimultiple-choice, many-choice
- numerical (enter anumber)
- region (select point on image)
- sketch
- highlight passage

\section*{learning catalytics}
 arlington school district
\& Back to all lectures \(\square\) Stop session Fill Review results Show floating session ID * Edit \& Delete
(4)
\begin{tabular}{|l|l|l|l|l|}
\hline Jump to \(\boldsymbol{\nabla}\) & 1 & 2 & 3 & 4 \\
\hline
\end{tabular}
current session: 123456 | 31 students
4. region

It's X's turn -- what's the best next move?
* Stop delivery

Deliver again
\(\square\) Assign groups
Flil Show all results


\section*{learning catalytics}
Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

\section*{arlington school district}
\& Back to all lectures \(\square\) Stop session Fill Review results
current session: 123456 | 31 students
Show floating session ID * Edit \& Delete
\begin{tabular}{|l|l|l|l|l|}
\hline Jump to \(\nabla\) & 1 & 2 & 3 & 4 \\
\hline
\end{tabular}
4. region It's X's turn -- what's the best next move?

```

Round 1

31 responses, 71\% correct

feedback $\mathcal{\&}$ support

Sample question types:

c. Effed expression summarizes the acc er mich
direction

Which of long answer short answer, word cloud (fin lin text)
wimultiple-choice, many-choice

- numerical (enter anumber)
- region (select point on image)
- sketch
- highlight passage

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help
5. region circle

learning catalytics

learning catalytics

Sample question types:

c. Effere expression summarizes the eacher whe which
direction

Which of long answer short answer, word cloud (fillin text)
wultipfe-choice, many-choice

- numerical (enter a number)
- ranking
- region (select point on image)
- sketch
© hightight passage

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

arlington school district

current session: 48222 | 28 students
\& Back to all lectures \square Stop session Fill Review results \mp Show floating session ID * Edit \approx Delete

\author{

* Stop delivery Q Deliver again Assign groups Fhill Show all results
}
(3) PI 2.0

learning catalytics

learning catalytics

Sample question types:

- region (select point on image)
- sketch
© high light passage

learning catalytics

4. sketch Sketch a graph of the function $(x)=(x-3)^{2}+2$.

* Stop delivery

Deliver again Assign groups
Fill Show all results

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

transformations of parabolas

current session: 773885 | 9 students
© Back to all lectures
\square Stop session rill Review results
Show floating session ID * Edit
Delete
4

$$
\begin{array}{|l|l|l|l|l|}
\hline \text { Jump to } \nabla & 1 & 2 & 3 & 4 \\
\hline
\end{array}
$$

4. sketch Sketch a graph of the function $f(x)=(x-3)^{2}+2$.
\& Stop delivery
Deliver again
Assign groups fill show all results

Round 1 \& 南
9 responses

Sample question types:

- region (select point on image)
- sketch
© high light passage

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

This is a graph of $f(x)=\ln x$. Sketch a graph of the derivative $f^{\prime}(x)$.

learning catronics

learning catornics

Sample question types:

Which of fong answer short answer, word cloud (fill in text)

- multipfe-choice, many-choice
- numerical (enter a number)
- ranking
- region (select point on image)
- sketch
- highlight passage

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

1. highlighting What do you see as the most important part of this Shakespeare \& Stop delivery Qeliver again Assign groups Fhill Show all results
sonnet?
For shamel deny that thou bear'st love to any,
Who for thyself art so unprovident.
Grant, if thou wit, thou art beloved of many,
But that thou none lovest is most evident;
For thou art so possess'd with murderous hate
That 'gainst thyself thou stick'st not to conspire.
Seeking that beauteous roof to ruinate
Which to repair should be thy chief desire.
o, change thy thought, that I may change my mind!
Shall hate be fairer lodged than gentle love?
Be, as thy presence is, gracious and kind,
Or to thyself at least kindhearted prove:
Make thee another self, for love of me,
That beauty still may live in thine or thee.

o, change thy thought, that I may change my
E AA

learning catalytics

Sample question types:

- direction
- expression
- long answer, shol an éry cluad (fill in text)
- m line nof, m 1 jenoice
- n I I a (eqrer a number)
- ranking
- region (select point on image)
- sketch
- highlight passage

(1) education

(2) PI
(3) PI 2.0

the future is here!

(1) education
(2) PI
(3) PI 2.0

Education is not just about:

- transferring information
- getting students to do what we do

Education is not just about:

- transferring information
- getting students to do what we do
discovery \& exploration a must!
not technology, but pedagogy matters
(1) education
(2) PI
(3) PI 2.0

Funding:

National Science Foundation

for a copy of this presentation:

mazur.harvard.edu

learningcatalytics.com

learningcatalytics.com

Follow me!

eric_mazur
(1) education
(2) PI
(3) PI 2.0

Interactive learning:
 Technology in the classroom (part 2)

...and how do we teach?

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

1. information transfer

Peer Instruction: a primer

1. information transfer

2. assimilation of information

Peer Instruction: a primer

1. information transfer (easy)

2. assimilation of information (hard and left to student)

Peer Instruction: a primer

Solution: move information transfer out of classroom!

Peer Instruction: a primer

Main features:

- pre-class reading
- in-class: depth, not 'coverage'
- ConcepTests

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Peer Instruction: a primer

Get your clickers ready!

- no ON/OFF button
- only last "click" counts
- display shows recorded answer
www.TurningTechnologies.com

Get your clickers ready!

Or use your web-enabled device!
rwpoll.com

- go to http://rwpoll.com
- enter session ID: EMAZUR

Get your clickers ready!

www.TurningTechnologies.com

Get your clickers ready!

unique ID on back of clicker
www.TurningTechnologies.com

Let's try it!

Archimedes Principle

Let's try it!

An object submerged either fully or partially in a fluid experiences an upward buoyant force the magnitude of which is equal to the magnitude of the force of gravity exerted on the fluid displaced by the object. The volume of displaced fluid is equal to the volume of the submerged portion of the object.

Let's try it!

An object submerged either fully or partially in a fluid experiences an upward buoyant force the magnitude of which is equal to the magnitude of the force of gravity exerted on the fluid displaced by the object. The volume of displaced fluid is equal to the volume of the submerged portion of the object.

Let's try it!

An object submerged either fully or partially in a fluid experiences an upward buoyant force the magnitude of which is equal to the magnitude of the force of gravity exerted on the fluid displaced by the object. The volume of displaced fluid is equal to the volume of the submerged portion of the object.

Let's try it!

A boat carrying a large boulder is floating on a small pond. The boulder is removed from the boat.

Let's try it!

A boat carrying a large boulder is floating on a small pond. The boulder is removed from the boat.

After the boulder is removed from the boat, the level of the water in the pond is

1. higher than
2. the same as
3. lower than
it was when the boulder was in the boat.

Let's try it!

A boat carrying a large boulder is floating on a small pond. The boulder is removed from the boat.

After the boulder is removed from the boat, the level of the water in the pond is

1. higher than
2. the same as
3. lower than
it was when the boulder was in the boat.

Let's try it!

A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond.

Let's try it!

A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond.

After the boulder sinks to the bottom of the pond, the level of the water in the pond is

1. higher than
2. the same as
3. lower than
it was when the boulder was in the boat.

Let's try it!

A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond.

After the boulder sinks to the bottom of the pond, the level of the water in the pond is

1. higher than
2. the same as
3. lower than
it was when the boulder was in the boat.

Let's try it!

remember: amount of displaced water

\downarrow

Let's try it!

remember: amount of displaced water

Let's try it!

remember: amount of displaced water

Let's try it!

remember: amount of displaced water

displaced
water

Let's try it!

remember: amount of displaced water

displaced water
$=\begin{gathered}\text { weight } \\ \text { of rock }\end{gathered}$

Let's try it!

remember: amount of displaced water

We all make mistakes!

Let's try it!

"Does this method work only with questions
that have a correct answer?"

Let's try it!

Let's try it!

original

3. crop

1. adjust contrast

2. remove outliers
-8 cig ces eg se a8 c898 :8 \% ↔.g ci c ce s
cic ocicg
3. remove blemishes

4. reconstruct

Consider this

a couple of points worth noting:

Consider this

a couple of points worth noting:

1. you got engaged

Consider this

a couple of points worth noting:

1. you got engaged
2. no "correct" answer

Consider this

a couple of points worth noting:

1. you got engaged
2. no "correct" answer
3. you got engaged

Consider this

a couple of points worth noting:

1. you got engaged
2. no "correct" answer
3. you got engaged
4. you don't need a correct answer!

Frequently Asked Questions

"Will it work at my institution?"

Frequently Asked Questions

"Will it work at my institution?"

It works here...

...but will it work here?

Will it work at my institution?

FCI normalized gain

Will it work at my institution?

FCI normalized gain

Will it work at my institution?

FCI normalized gain

Will it work at my institution?

FCI normalized gain

Will it work at my institution?

exam performance

Will it work at my institution?

exam performance

Will it work at my institution?

student retention

Will it work at my institution?

student retention

Will it work at my institution?

student retention

Will it work at my institution?

similar learning gains in different environments

Frequently Asked Questions

"Why does it work?"

Why does it work?

discussion or more time to think?

Why does it work?

compare three activities

question

distract

question

Why does it work?

compare three activities

question

reflect

question

Why does it work?

compare three activities

question

discuss

question

Why does it work?

the importance of discussion

Why does it work?

the importance of discussion

Why does it work?

the importance of discussion

Why does it work?

the importance of discussion

Frequently Asked Questions

"How do I move information transfer out of classroom?"

Getting students to read

My approach:

- Reading quizzes (1991)
- Reading summaries (1994)
- Just-in-Time Teaching (1999)

Getting students to read

Just-in-time-Teaching (JiTT)
www.jitt.org

Getting students to read

JiTT workflow

Getting students to read

JiTT workflow

Getting students to read

JiTT workflow

Getting students to read

JiTT workflow

Getting students to read

JiTT workflow

Getting students to read

JiTT workflow

Getting students to read

JiTT workflow

Frequently Asked Questions

"Do I need clickers?"

Clickers necessary?

Flashcards: simple and effective

Clickers necessary?

Flashcards: simple and effective

Meltzer and Mannivanan, South Eastern Louisiana University

Clickers necessary?

Imagine a rope that fits snugly along the equator.

Clickers necessary?

Imagine a rope that fits snugly along the equator.

Suppose the rope is cut and 1 m of rope is inserted between the cut ends. If the rope were to maintain a circular shape, how far off the surface of the Earth would it float?

1. the width of a few atoms
2. the width of a few hairs
3. about 0.15 m
4. exactly 1 m
5. more than 1 m

Clickers necessary?

Imagine a rope that fits snugly along the equator.

Suppose the rope is cut and 1 m of rope is inserted between the cut ends. If the rope were to maintain a circular shape, how far off the surface of the Earth would it float?

1. the width of a few atoms
2. the width of a few hairs
3. about 0.15 m
4. exactly 1 m
5. more than 1 m

Clickers necessary?

circumference at the equator:

$$
2 \pi R_{\mathrm{E}}
$$

Clickers necessary?

circumference at the equator:

$$
2 \pi R_{\mathrm{E}}
$$

new circumference:

$$
2 \pi R_{\mathrm{E}}+1 \mathrm{~m}
$$

Clickers necessary?

circumference at the equator:

$$
2 \pi R_{\mathrm{E}}
$$

new circumference:

$$
2 \pi R_{\mathrm{E}}+1 \mathrm{~m}
$$

radius of circle with new circumference:

$$
2 \pi R=2 \pi R_{\mathrm{E}}+1 \mathrm{~m}, \text { and so } \quad R=R_{\mathrm{E}}+\frac{1 \mathrm{~m}}{2 \pi}
$$

Clickers necessary?

You all got fired up!

Clickers necessary?

You all got fired up!

(WITHOUT CLICKERS!)

Clickers necessary?

It's not the technology, but the pedagogy!

Clickers necessary?

It's not the technology, but the pedagogy!
(but clickers do offer advantages)

Frequently Asked Questions

"How do I deal with students who resist this new approach to studying?"

Student resistance

After changing, things might get worse before they get better!

Student resistance

Written on Wednesday Feb 16, two weeks into the course:

- subject: concerns
fessor Mazur,
Here are a few concerns. I speak for many of my classmates.
multiple hours on

1) You are giving us WAY to much work. After spa many of the
 questions, 1 now workbook. the questions. This is more work than
homework in almost half the confident on all semester in all of my
much work, I would
ring the lect ur a bad stu the
understand. Sack to internalize int by point, the readings in
it is very din
m
it of the lecture
entirety. While the PRS complex material.
am ability to understand it, and

Student resistance

Written on Monday May 23, just after the final exam:
for a great semester. You are an and each and
First of all I want to thank you for and it is clear that you truly
I'm not sure to what extent youround
l may be right aro as
l could
exam well today. but it looks like. I studied at all no matter whe an an the
The exal grades (if at all), but A and an A-. . , the A, but are one of the bes
the cutoff point
the l'm keeping fingers
and
happens with my gave ever had at Harva.

Thanks again!

Student resistance
3) Hello Pa. Mayer. Grunted to hand you thus io de as atokeng my dey application of

ave mopping and haver

Student resistance

"I wanted to hand you this card as a token of my deep appreciation of how you have helped me
throughout the semester.

Student resistance

"I wanted to hand you this card as a token of my deep appreciation of how you have helped me
throughout the semester. You are truly awe inspir-
ing and have changed how I look at "learning".

Student resistance

"I wanted to hand you this card as a token of my deep appreciation of how you have helped me
throughout the semester. You are truly awe inspir-
ing and have changed how I look at "learning". [....]

You really made a difference in my life."

Student resistance

and don't forget...

Student resistance

and don't forget...

PI leads to better learning and retention!

Summary

Summary

PI easy to implement (and improves learning gains)

Summary

PI easy to implement (and improves learning gains)

technology facilitates active engagement (but not required)

For a copy of this presentation:

http://mazur.harvard.edu

Follow me! \square eric_mazur

