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Introduction

why use femtosecond pulses?
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Outline

• femtosecond materials interactions

• subcellular surgery

• nanoneurosurgery



Femtosecond materials interactions

focus laser beam inside material

Opt. Lett. 21, 2023 (1996)
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Femtosecond materials interactions

high intensity at focus…
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Femtosecond materials interactions

…causes nonlinear ionization…
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Femtosecond materials interactions

and ‘microexplosion’ causes microscopic damage…
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Femtosecond materials interactions



Femtosecond materials interactions

photon energy < bandgap             nonlinear interaction           



Femtosecond materials interactions

nonlinear interaction provides bulk confi nement



Femtosecond materials interactions

nonlinear interaction provides bulk confi nement
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Femtosecond materials interactions

SEM & AFM:

• 100-nm cavities

• little colateral damage



Femtosecond materials interactions

Dark-fi eld scattering

sample
objective



Femtosecond materials interactions

block probe beam…
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Femtosecond materials interactions

… bring in pump beam…
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Femtosecond materials interactions

… damage scatters probe beam
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Femtosecond materials interactions
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Femtosecond materials interactions
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Femtosecond materials interactions
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Femtosecond materials interactions
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Femtosecond materials interactions
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Femtosecond materials interactions

vary numerical aperture
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Femtosecond materials interactions

fi t gives threshold intensity: Ith = 2.5 x 1017 W/m2
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Femtosecond materials interactions

vary material…
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Femtosecond materials interactions

…threshold varies with band gap (but not much!)
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Femtosecond materials interactions

• nonlinear interaction

• disrupt matter inside bulk

• ablation at very low energy



Outline

• femtosecond materials interactions

• subcellular surgery

• nanoneurosurgery



Subcellular surgery

Q: can we ablate material on the subcellular scale?



Subcellular surgery

Requirements:

• submicrometer precision (in bulk) 

• no damage to neighboring structures 

• independent of structure/organelle type 



Subcellular surgery

Cytoskeleton

• gives a cell its shape

• provides a scaffold for organelles

• responsible cell motion and attachment

• facilitates intracellular transport and signaling 

• required for cell division 



Subcellular surgery

two components

actin fibers microtubules





Subcellular surgery
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Subcellular surgery

sample

UV
lamp

objective

CCD
camera

fluorescently label sample



Subcellular surgery
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Subcellular surgery

sample

fluorescence
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Subcellular surgery
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Subcellular surgery
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Subcellular surgery
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Subcellular surgery

nucleus of fixed endothelial cell

white light microscopy



Subcellular surgery

nucleus of fixed endothelial cell

fluorescence microscopy



Subcellular surgery

irradiate with fs laser

fluorescence microscopy



Subcellular surgery

irradiate with fs laser

fluorescence microscopy



Subcellular surgery

bleaching or ablation?

TEM image



Subcellular surgery

three regions of interaction
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Subcellular surgery

three regions of interaction
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Subcellular surgery

three regions of interaction
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Subcellular surgery

three regions of interaction

pulse energy (nJ)
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Subcellular surgery

three regions of interaction
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Subcellular surgery

three regions of interaction
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Subcellular surgery

Definitive proof of ablation

• ablation width as small as 100 nm

• ablation threshold varies slightly

• ablation threshold 20% above bleaching threshold 



Subcellular surgery

Definitive proof of ablation

• ablation width as small as 100 nm

• ablation threshold varies slightly

• ablation threshold 20% above bleaching threshold 



Subcellular surgery

Q: subcellular surgery on live cells?



Subcellular surgery

subcellular surgery sequence





Subcellular surgery

subcellular surgery sequence

ethydium bromide test



Subcellular surgery

subcellular surgery sequence
target 1

ethydium bromide test



Subcellular surgery

subcellular surgery sequence
target 1

ethydium bromide test



Subcellular surgery

subcellular surgery sequence
target 1

target 2

ethydium bromide test



Subcellular surgery

Q: can we probe the dynamics of the cytoskeleton?



Subcellular surgery

YFP-labeled actin fiber network of a live cell

10 µm



Subcellular surgery

cut a single fiber bundle

10 µm



Subcellular surgery

cut a single fiber bundle

10 µm



Subcellular surgery

gap widens with time

t = 10 s10 µm



Subcellular surgery

retraction or depolymerization?

10 µm



Subcellular surgery

retraction or depolymerization?

10 µm



Subcellular surgery

retraction!

10 µm



Subcellular surgery

dynamics provides information on in vivo mechanics

10 µm



Subcellular surgery
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Subcellular surgery
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Subcellular surgery
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Subcellular surgery
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Subcellular surgery
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Nanoneurosurgery

Q: can we probe the neurological origins of behavior?



Nanoneurosurgery

subcellular surgery sequence

neuron basics

cell body



Nanoneurosurgery
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neuron basics
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Nanoneurosurgery

subcellular surgery sequence

neuron basics

cell body

dendrites

axon
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Nanoneurosurgery

subcellular surgery sequence
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cell body

dendrites

axon



Nanoneurosurgery

Juergen Berger & Ralph Sommer
Max-Planck Institute for Developmental Biology

Caenorhabditis elegans



Nanoneurosurgery

Caenorhabditis elegans

• simple model organism

• similarities to higher organisms

• genome fully sequenced

• easy to handle



Nanoneurosurgery

Caenorhabditis elegans

• 80 μm x 1 mm

• about 1000 cells

• 302 neurons

• invariant wiring diagram

• neuronal system completely encodes behavior



Nanoneurosurgery

Caenorhabditis elegans



Nanoneurosurgery

Caenorhabditis elegans



Nanoneurosurgery

in utero

C. elegans life cycle
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in utero

ex utero+2.5 h

C. elegans life cycle
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C. elegans life cycle
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Nanoneurosurgery

in utero

ex utero+2.5 h

L1

+9 h

L2

+12 h
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+8 h

adult
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Nanoneurosurgery

mutation behavioral
assay

infer role
of neuronworm

conventional method

Mapping behavior to neurons



Nanoneurosurgery

dissect
neurons

behavioral
assay

infer role
of neuronworm

femtosecond laser ablation

mutation behavioral
assay

infer role
of neuronworm

conventional method

Mapping behavior to neurons



Nanoneurosurgery

ASH neurons

• responsible for chemical sensing

• ciliary projections extend through skin

• one on each side



ASH neurons

Nanoneurosurgery



ASH neurons

Nanoneurosurgery



ASH neurons

Nanoneurosurgery



ASH neurons

Nanoneurosurgery

axon ring

dendrites

L/R cell bodies



make ASH neurons express GFP

Nanoneurosurgery

a …… b
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make ASH neurons express GFP

Nanoneurosurgery



Nanoneurosurgery

GFP: absorbs UV, emits green



Nanoneurosurgery

4 µm

retraction of cut dendrite (6 nJ)
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4 µm

retraction of cut dendrite (6 nJ)



Nanoneurosurgery

t = 30 s

4 µm

retraction of cut dendrite (6 nJ)



Nanoneurosurgery

t = 3 min

4 µm

retraction of cut dendrite (6 nJ)



ASH neurons

Nanoneurosurgery



ASK neurons

Nanoneurosurgery



AUA neurons

Nanoneurosurgery



ASI neurons

Nanoneurosurgery



Nanoneurosurgery

need exquisite precision!



Nanoneurosurgery

DiO-stained bundle of dendrites

5 µm



Nanoneurosurgery

cut single dendrite in bundle (3 nJ)

5 µm



Nanoneurosurgery

no damange to neighboring dendrites

5 µm



Nanoneurosurgery

revive worm, reimage 1 day later



Nanoneurosurgery



Nanoneurosurgery

osmolarity assay
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AFD neurons (temperature sensors)

Nanoneurosurgery



Nanoneurosurgery



Nanoneurosurgery



Nanoneurosurgery

Q: where does the ASH sense temperature?



Nanoneurosurgery

glass slide

microdroplet

microdroplet assay



Nanoneurosurgery

glass slide

microdroplet

microdroplet assay



Nanoneurosurgery

glass slide

microdroplet

video
camera

microdroplet assay



Nanoneurosurgery

surgery results in quantifiable behavior changes

before after



Nanoneurosurgery

temperature sensing occurs at tip of dendrite
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Cell biology

Targeted transfection by

femtosecond laser

T
he challenge for successful delivery of

foreign DNA into cells in vitro, a key

technique in cell and molecular biol-

ogy with important biomedical implications,

is to improve transfection efficiency while

leaving the cell’s architecture intact. Here

we show that a variety of mammalian 

cells can be directly transfected with DNA 

without perturbing their structure by first

creating a tiny, localized perforation in the

membrane using ultrashort (femtosecond),

high-intensity, near-infrared laser pulses.

Not only does this superior optical tech-

nique give high transfection efficiency and

cell survival, but it also allows simultaneous

evaluation of the integration and expression

of the introduced gene.

Previous techniques that have been devel-

oped for transfection of cells with DNA
1

include carrier-mediated transfer2 and trans-

fer by plasma-membrane permeabilization
3 ,

as well as direct transfer4 , but the efficiency of

targeted DNA delivery by these methods

may not be optimal. Moreover, none allows

contact-free, non-disruptive, stable trans-

fection of individual cells and concomitant

evaluation in situ of transgene expression. 

We directed a high-intensity (10
12 W

cm
�2 ), near-infrared, femtosecond-pulsed

laser beam (wavelength, 800 nm) from an

80-MHz titanium–sapphire laser, with a

mean power of 50–100 mW and tightly

focused using a high-numerical-aperture

objective, at a sub-femtolitre focal volume 

at the cell membrane. This resulted in the

formation of a single, site-specific, transient

perforation in the cell membrane through

which DNA could enter. This mode of 

targeted transfection differs from the less

precise nanosecond-pulsed, ultraviolet (355

nm) lasers used previously
5 and which were

found to disrupt cellular integrity
6 .

Using Chinese hamster ovarian (CHO)

and rat–kangaroo kidney epithelial (PtK2)

cells, we studied the process of transfection

mediated by intense near-infrared femto-

second laser pulses. Cells were suspended

inside a sterile miniaturized cell chamber in

0.5 ml culture medium containing 0.2 �g

plasmid DNA vector pEGFP-N1 (4.7 kilo-

bases) encoding enhanced green fluorescent

protein (EGFP)7 . Transmission images of

cells were obtained at low power (�5 �W),

and the near-infrared laser beam was then

focused (under the same microscope) on

the edge of the membrane of a target cell,

which was exposed to an enhanced mean

laser power of 50–100 mW for 16 ms so that

transfection could occur. More than 200

cells of each type were targeted in each of 18

replicate experiments; it took 10–15 s to

prepare for the transfection of each cell.

We assessed the integration and expres-

sion efficiency of the EGFP gene in situ
by

time-lapse two-photon fluorescence imag-

ing8 at a mean laser power of �1 mW over a

period of 72 h, as well as by two-photon flu-

orescence-lifetime imaging (TPFLIM)9 . Fig-

ure 1 shows that diffraction-limited focusing

of intense femtosecond near-infrared laser

pulses selectively facilitates transfection of

the target cells, but not of the adjacent cells.

Expression of EGFP in the transfected cell is

also demonstrated by TPFLIM, and the

measured fluorescence lifetime of about 

2.4 ns is consistent with that reported for 

mammalian cells expressing EGFP
10 .

Irrespective of cell type, the transfection

achieved by this technique was invariably

100%. This high level of selective and total

transfection, without any detrimental effects

on growth and division, and with virtually

no cell death or sign of apoptosis, to
gether

with the ability to determine expression by

fluorescence-intensity imaging and TPFLIM

with the same microscope, demonstrate the

potential of this non-disruptive technique 

in transfection and expression studies. The

ability to transfer foreign DNA safely and

efficiently into specific cell types (including

stem cells) — circumventing the need for

mechanical, electrical or chemical means —

will be an encouraging advance for a range

of ventures, including targeted gene therapy

and DNA vaccination.

Figure 1 Analysis of the targeted transfection of Chinese hamster

ovarian (CHO) cells with a plasmid encoding enhanced green fluor-

escent protein (EGFP) by in situ visualization, and measurement of

its expression by near-infrared, two-photon-excitation-evoked,

real EGFP fluorescence detection and fluorescence-lifetime imag-

ing. a, Real EGFP fluorescence image of several CHO cells trans-

fected with the pEGFP-N1 plasmid. b, Transmission image of a

single transfected CHO cell (arrow). c, Two-photon fluorescence-

lifetime image of the same cell expressing EGFP; colour scale

indicates the fluorescence lifetime (�) between 0 and 5 nano-

seconds. Inset, distribution of fluorescence lifetime (in picoseconds)

of EGFP throughout the entire transfected cell. Scale bar, 25 �m.

© 2002 NaturePublishing Group

Cell transfection
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leaving the cell’s architecture intact. Here

we show that a variety of mammalian 

cells can be directly transfected with DNA 

without perturbing their structure by first

creating a tiny, localized perforation in the

membrane using ultrashort (femtosecond),

high-intensity, near-infrared laser pulses.

Not only does this superior optical tech-

nique give high transfection efficiency and

cell survival, but it also allows simultaneous

evaluation of the integration and expression

of the introduced gene.

Previous techniques that have been devel-

oped for transfection of cells with DNA
1

include carrier-mediated transfer2 and trans-

fer by plasma-membrane permeabilization
3 ,

as well as direct transfer4 , but the efficiency of

targeted DNA delivery by these methods

may not be optimal. Moreover, none allows

contact-free, non-disruptive, stable trans-

fection of individual cells and concomitant

evaluation in situ of transgene expression. 

We directed a high-intensity (10
12 W

cm
�2 ), near-infrared, femtosecond-pulsed

laser beam (wavelength, 800 nm) from an

80-MHz titanium–sapphire laser, with a

mean power of 50–100 mW and tightly

focused using a high-numerical-aperture

objective, at a sub-femtolitre focal volume 

at the cell membrane. This resulted in the

formation of a single, site-specific, transient

perforation in the cell membrane through

which DNA could enter. This mode of 

targeted transfection differs from the less

precise nanosecond-pulsed, ultraviolet (355

nm) lasers used previously
5 and which were

found to disrupt cellular integrity
6 .

Using Chinese hamster ovarian (CHO)

and rat–kangaroo kidney epithelial (PtK2)

cells, we studied the process of transfection

mediated by intense near-infrared femto-

second laser pulses. Cells were suspended

inside a sterile miniaturized cell chamber in

0.5 ml culture medium containing 0.2 �g

plasmid DNA vector pEGFP-N1 (4.7 kilo-

bases) encoding enhanced green fluorescent

protein (EGFP)7 . Transmission images of

cells were obtained at low power (�5 �W),

and the near-infrared laser beam was then

focused (under the same microscope) on

the edge of the membrane of a target cell,

which was exposed to an enhanced mean

laser power of 50–100 mW for 16 ms so that

transfection could occur. More than 200

cells of each type were targeted in each of 18

replicate experiments; it took 10–15 s to

prepare for the transfection of each cell.

We assessed the integration and expres-

sion efficiency of the EGFP gene in situ
by

time-lapse two-photon fluorescence imag-

ing8 at a mean laser power of �1 mW over a

period of 72 h, as well as by two-photon flu-

orescence-lifetime imaging (TPFLIM)9 . Fig-

ure 1 shows that diffraction-limited focusing

of intense femtosecond near-infrared laser

pulses selectively facilitates transfection of

the target cells, but not of the adjacent cells.

Expression of EGFP in the transfected cell is

also demonstrated by TPFLIM, and the

measured fluorescence lifetime of about 

2.4 ns is consistent with that reported for 

mammalian cells expressing EGFP
10 .

Irrespective of cell type, the transfection

achieved by this technique was invariably

100%. This high level of selective and total

transfection, without any detrimental effects

on growth and division, and with virtually

no cell death or sign of apoptosis, to
gether

with the ability to determine expression by

fluorescence-intensity imaging and TPFLIM

with the same microscope, demonstrate the

potential of this non-disruptive technique 

in transfection and expression studies. The

ability to transfer foreign DNA safely and

efficiently into specific cell types (including

stem cells) — circumventing the need for

mechanical, electrical or chemical means —

will be an encouraging advance for a range

of ventures, including targeted gene therapy

and DNA vaccination.

Figure 1 Analysis of the targeted transfection of Chinese hamster

ovarian (CHO) cells with a plasmid encoding enhanced green fluor-

escent protein (EGFP) by in situ visualization, and measurement of

its expression by near-infrared, two-photon-excitation-evoked,

real EGFP fluorescence detection and fluorescence-lifetime imag-

ing. a, Real EGFP fluorescence image of several CHO cells trans-

fected with the pEGFP-N1 plasmid. b, Transmission image of a

single transfected CHO cell (arrow). c, Two-photon fluorescence-

lifetime image of the same cell expressing EGFP; colour scale

indicates the fluorescence lifetime (�) between 0 and 5 nano-

seconds. Inset, distribution of fluorescence lifetime (in picoseconds)

of EGFP throughout the entire transfected cell. Scale bar, 25 �m.
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creating a tiny, localized perforation in the
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cell survival, but it also allows simultaneous
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of the introduced gene.
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3 ,

as well as direct transfer4 , but the efficiency of

targeted DNA delivery by these methods
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contact-free, non-disruptive, stable trans-

fection of individual cells and concomitant

evaluation in situ of transgene expression. 
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which DNA could enter. This mode of 

targeted transfection differs from the less

precise nanosecond-pulsed, ultraviolet (355

nm) lasers used previously
5 and which were

found to disrupt cellular integrity
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Using Chinese hamster ovarian (CHO)
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cells, we studied the process of transfection
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second laser pulses. Cells were suspended

inside a sterile miniaturized cell chamber in

0.5 ml culture medium containing 0.2 �g

plasmid DNA vector pEGFP-N1 (4.7 kilo-

bases) encoding enhanced green fluorescent

protein (EGFP)7 . Transmission images of

cells were obtained at low power (�5 �W),

and the near-infrared laser beam was then

focused (under the same microscope) on

the edge of the membrane of a target cell,

which was exposed to an enhanced mean

laser power of 50–100 mW for 16 ms so that

transfection could occur. More than 200

cells of each type were targeted in each of 18

replicate experiments; it took 10–15 s to

prepare for the transfection of each cell.

We assessed the integration and expres-

sion efficiency of the EGFP gene in situ
by
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ing8 at a mean laser power of �1 mW over a

period of 72 h, as well as by two-photon flu-

orescence-lifetime imaging (TPFLIM)9 . Fig-

ure 1 shows that diffraction-limited focusing

of intense femtosecond near-infrared laser

pulses selectively facilitates transfection of

the target cells, but not of the adjacent cells.

Expression of EGFP in the transfected cell is

also demonstrated by TPFLIM, and the

measured fluorescence lifetime of about 

2.4 ns is consistent with that reported for 

mammalian cells expressing EGFP
10 .

Irrespective of cell type, the transfection

achieved by this technique was invariably

100%. This high level of selective and total

transfection, without any detrimental effects

on growth and division, and with virtually

no cell death or sign of apoptosis, to
gether

with the ability to determine expression by

fluorescence-intensity imaging and TPFLIM

with the same microscope, demonstrate the

potential of this non-disruptive technique 

in transfection and expression studies. The

ability to transfer foreign DNA safely and

efficiently into specific cell types (including

stem cells) — circumventing the need for

mechanical, electrical or chemical means —

will be an encouraging advance for a range

of ventures, including targeted gene therapy

and DNA vaccination.

Figure 1 Analysis of the targeted transfection of Chinese hamster

ovarian (CHO) cells with a plasmid encoding enhanced green fluor-

escent protein (EGFP) by in situ visualization, and measurement of

its expression by near-infrared, two-photon-excitation-evoked,

real EGFP fluorescence detection and fluorescence-lifetime imag-

ing. a, Real EGFP fluorescence image of several CHO cells trans-

fected with the pEGFP-N1 plasmid. b, Transmission image of a

single transfected CHO cell (arrow). c, Two-photon fluorescence-

lifetime image of the same cell expressing EGFP; colour scale

indicates the fluorescence lifetime (�) between 0 and 5 nano-

seconds. Inset, distribution of fluorescence lifetime (in picoseconds)

of EGFP throughout the entire transfected cell. Scale bar, 25 �m.
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creating a tiny, localized perforation in the

membrane using ultrashort (femtosecond),
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cell survival, but it also allows simultaneous

evaluation of the integration and expression

of the introduced gene.
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include carrier-mediated transfer2 and trans-

fer by plasma-membrane permeabilization
3 ,

as well as direct transfer4 , but the efficiency of

targeted DNA delivery by these methods

may not be optimal. Moreover, none allows

contact-free, non-disruptive, stable trans-

fection of individual cells and concomitant

evaluation in situ of transgene expression. 

We directed a high-intensity (10
12 W

cm
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formation of a single, site-specific, transient

perforation in the cell membrane through

which DNA could enter. This mode of 

targeted transfection differs from the less

precise nanosecond-pulsed, ultraviolet (355

nm) lasers used previously
5 and which were

found to disrupt cellular integrity
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Using Chinese hamster ovarian (CHO)

and rat–kangaroo kidney epithelial (PtK2)

cells, we studied the process of transfection

mediated by intense near-infrared femto-

second laser pulses. Cells were suspended

inside a sterile miniaturized cell chamber in

0.5 ml culture medium containing 0.2 �g

plasmid DNA vector pEGFP-N1 (4.7 kilo-

bases) encoding enhanced green fluorescent

protein (EGFP)7 . Transmission images of

cells were obtained at low power (�5 �W),

and the near-infrared laser beam was then

focused (under the same microscope) on

the edge of the membrane of a target cell,

which was exposed to an enhanced mean

laser power of 50–100 mW for 16 ms so that

transfection could occur. More than 200

cells of each type were targeted in each of 18

replicate experiments; it took 10–15 s to

prepare for the transfection of each cell.

We assessed the integration and expres-

sion efficiency of the EGFP gene in situ
by

time-lapse two-photon fluorescence imag-

ing8 at a mean laser power of �1 mW over a

period of 72 h, as well as by two-photon flu-

orescence-lifetime imaging (TPFLIM)9 . Fig-

ure 1 shows that diffraction-limited focusing

of intense femtosecond near-infrared laser

pulses selectively facilitates transfection of

the target cells, but not of the adjacent cells.

Expression of EGFP in the transfected cell is

also demonstrated by TPFLIM, and the

measured fluorescence lifetime of about 

2.4 ns is consistent with that reported for 

mammalian cells expressing EGFP
10 .

Irrespective of cell type, the transfection

achieved by this technique was invariably

100%. This high level of selective and total

transfection, without any detrimental effects

on growth and division, and with virtually

no cell death or sign of apoptosis, to
gether

with the ability to determine expression by

fluorescence-intensity imaging and TPFLIM

with the same microscope, demonstrate the

potential of this non-disruptive technique 

in transfection and expression studies. The

ability to transfer foreign DNA safely and

efficiently into specific cell types (including

stem cells) — circumventing the need for

mechanical, electrical or chemical means —

will be an encouraging advance for a range

of ventures, including targeted gene therapy

and DNA vaccination.

Figure 1 Analysis of the targeted transfection of Chinese hamster

ovarian (CHO) cells with a plasmid encoding enhanced green fluor-

escent protein (EGFP) by in situ visualization, and measurement of

its expression by near-infrared, two-photon-excitation-evoked,

real EGFP fluorescence detection and fluorescence-lifetime imag-

ing. a, Real EGFP fluorescence image of several CHO cells trans-

fected with the pEGFP-N1 plasmid. b, Transmission image of a

single transfected CHO cell (arrow). c, Two-photon fluorescence-

lifetime image of the same cell expressing EGFP; colour scale

indicates the fluorescence lifetime (�) between 0 and 5 nano-

seconds. Inset, distribution of fluorescence lifetime (in picoseconds)

of EGFP throughout the entire transfected cell. Scale bar, 25 �m.
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ogy with important biomedical implications,
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without perturbing their structure by first

creating a tiny, localized perforation in the

membrane using ultrashort (femtosecond),
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cell survival, but it also allows simultaneous

evaluation of the integration and expression

of the introduced gene.
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include carrier-mediated transfer2 and trans-

fer by plasma-membrane permeabilization
3 ,

as well as direct transfer4 , but the efficiency of

targeted DNA delivery by these methods

may not be optimal. Moreover, none allows

contact-free, non-disruptive, stable trans-

fection of individual cells and concomitant

evaluation in situ of transgene expression. 
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�2 ), near-infrared, femtosecond-pulsed

laser beam (wavelength, 800 nm) from an

80-MHz titanium–sapphire laser, with a

mean power of 50–100 mW and tightly

focused using a high-numerical-aperture

objective, at a sub-femtolitre focal volume 

at the cell membrane. This resulted in the

formation of a single, site-specific, transient

perforation in the cell membrane through

which DNA could enter. This mode of 

targeted transfection differs from the less

precise nanosecond-pulsed, ultraviolet (355

nm) lasers used previously
5 and which were

found to disrupt cellular integrity
6 .

Using Chinese hamster ovarian (CHO)

and rat–kangaroo kidney epithelial (PtK2)

cells, we studied the process of transfection

mediated by intense near-infrared femto-

second laser pulses. Cells were suspended

inside a sterile miniaturized cell chamber in

0.5 ml culture medium containing 0.2 �g

plasmid DNA vector pEGFP-N1 (4.7 kilo-

bases) encoding enhanced green fluorescent

protein (EGFP)7 . Transmission images of

cells were obtained at low power (�5 �W),

and the near-infrared laser beam was then

focused (under the same microscope) on

the edge of the membrane of a target cell,

which was exposed to an enhanced mean

laser power of 50–100 mW for 16 ms so that

transfection could occur. More than 200

cells of each type were targeted in each of 18

replicate experiments; it took 10–15 s to

prepare for the transfection of each cell.

We assessed the integration and expres-

sion efficiency of the EGFP gene in situ
by

time-lapse two-photon fluorescence imag-

ing8 at a mean laser power of �1 mW over a

period of 72 h, as well as by two-photon flu-

orescence-lifetime imaging (TPFLIM)9 . Fig-

ure 1 shows that diffraction-limited focusing

of intense femtosecond near-infrared laser

pulses selectively facilitates transfection of

the target cells, but not of the adjacent cells.

Expression of EGFP in the transfected cell is

also demonstrated by TPFLIM, and the

measured fluorescence lifetime of about 

2.4 ns is consistent with that reported for 

mammalian cells expressing EGFP
10 .

Irrespective of cell type, the transfection

achieved by this technique was invariably

100%. This high level of selective and total

transfection, without any detrimental effects

on growth and division, and with virtually

no cell death or sign of apoptosis, to
gether

with the ability to determine expression by

fluorescence-intensity imaging and TPFLIM

with the same microscope, demonstrate the

potential of this non-disruptive technique 

in transfection and expression studies. The

ability to transfer foreign DNA safely and

efficiently into specific cell types (including

stem cells) — circumventing the need for

mechanical, electrical or chemical means —

will be an encouraging advance for a range

of ventures, including targeted gene therapy

and DNA vaccination.

Figure 1 Analysis of the targeted transfection of Chinese hamster

ovarian (CHO) cells with a plasmid encoding enhanced green fluor-

escent protein (EGFP) by in situ visualization, and measurement of

its expression by near-infrared, two-photon-excitation-evoked,

real EGFP fluorescence detection and fluorescence-lifetime imag-

ing. a, Real EGFP fluorescence image of several CHO cells trans-

fected with the pEGFP-N1 plasmid. b, Transmission image of a

single transfected CHO cell (arrow). c, Two-photon fluorescence-

lifetime image of the same cell expressing EGFP; colour scale

indicates the fluorescence lifetime (�) between 0 and 5 nano-

seconds. Inset, distribution of fluorescence lifetime (in picoseconds)

of EGFP throughout the entire transfected cell. Scale bar, 25 �m.
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Spindle mechanics

study dynamics of microtubules in mytotic spindle 



Spindle mechanics

spindle forms during cell division 



Spindle mechanics

spindle forms during cell division 

interphase

prophase

metaphase

anaphase

telophase



Spindle mechanics

can we determine polarity and length of microtubules?



Spindle mechanics

observe depolymerization dynamics after planar cut(s)



Spindle mechanics

spindles from frog egg extract



Spindle mechanics

direct observation of depolymerization wave



Spindle mechanics

direct observation of depolymerization wave



Spindle mechanics

direct observation of depolymerization wave



Spindle mechanics

double cuts provide information on mean length



Spindle mechanics

spindle organization

polarity & length distributions varies across cell

70% 50% 30%



Spindle mechanics

spindle organization

polarity & length distributions varies across cell

70% 50% 30%



Conclusion

 

 

great tool for manipulating the machinery of life
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