

Black silicon: engineering an intermediate band in silicon for optical sensing and photovoltaics

G1 Faculty Lecture **Harvard University** Cambridge, MA, 31 October 2011

Mark Winkler

Renee Sher

Yu-Ting Lin

Eric Mazur

irradiate with 100-fs 10 kJ/m² pulses

TRUST

absorptance
$$(1 - R_{int} - T_{int})$$

R

absorptance
$$(1 - R_{int} - T_{int})$$

new process & new class of material!

gap determines optical and electronic properties

shallow-level dopants control electronic properties

shallow-level dopants control electronic properties

deep-level dopants typically avoided

femtosecond laser-doping gives rise to intermediate band

substrate/dopant combinations

dopants:

N	0	F
Р	S	CI
	Se	
Sb	Те	

substrate/dopant combinations

dopants:

substrates:

- Si Ge ZnO InP GaAs
- Ti Ag Al Cu Pd Rh Ta Pt

focus on chalcogen-doped silicon

substrates:

focus on chalcogen-doped silicon

focus on chalcogen-doped silicon

focus on chalcogen-doped silicon

cross-sectional Transmission Electron Microscopy

disordered surface layer 1 µm

crystalline Si core

- 300-nm disordered surface layer
- undisturbed crystalline core

• surface layer: nanocrystalline Si with 1.6% sulfur

1 µm

two processes: melting and ablation

different thresholds:

melting: 1.5 kJ/m²

ablation: 3.1 kJ/m²

isolate surface layer for Hall measurements

device layer

buried oxide

silicon substrate

isolate surface layer for Hall measurements

device layer buried oxide

silicon substrate

isolate surface layer for Hall measurements

laser doped region

buried oxide

silicon substrate

isolate surface layer for Hall measurements

isolate surface layer for Hall measurements

Hall measurements

Devices

SiOnyx

Army Research Office DARPA Department of Energy NDSEG National Science Foundation

Funding:

for more information and a copy of this presentation:

http://mazur.harvard.edu

doogle search finn cening cucky

mazur			

Google Search	I'm Feeling Lucky
[(

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Army Research Office DARPA Department of Energy NDSEG National Science Foundation

Funding:

for more information and a copy of this presentation:

http://mazur.harvard.edu

Devices

1.5% efficiency, a good beginning

