Manipulating Matter with Ultrashort Laser Pulses

Wednesday Night Research Seminar Harvard University Cambridge, MA, 9 November 2011

focus laser beam inside material

Opt. Lett. 21, 2023 (1996)

	photon energy < bandgap \longrightarrow nonlinear interaction														

Some applications:

- data storage
- waveguides
- microfluidics

Outline

- femtosecond micromachining
- low-energy machining
- applications

Dark-field scattering

block probe beam...

... bring in pump beam...

... damage scatters probe beam

vary numerical aperture

fit gives threshold intensity: $I_{th} = 2.5 \times 10^{17} \text{ W/m}^2$

vary material...

...threshold varies with band gap (but not much!)

what prevents damage at low NA?

Competing nonlinear effects:

- multiphoton absorption
- supercontinuum generation
- self-focusing

why the difference?

very different confocal length/interaction length

high NA: interaction length too short for self-focusing

threshold for supercontinuum generation

threshold for damage

Points to keep in mind:

- threshold critically dependent on NA
- surprisingly little material dependence
- avalanche ionization important

Outline

- femtosecond micromachining
- low-energy machining
- applications

threshold decreases with increasing numerical aperture

less than 10 nJ at high numerical aperture!

amplified laser: 1 kHz, 1 mJ

heat diffusion time: $\tau_{diff} \approx 1 \ \mu s$

long cavity oscillator: 25 MHz, 25 nJ

heat diffusion time: $\tau_{diff} \approx 1 \ \mu s$

High repetition-rate micromachining:

- structural changes exceed focal volume
- spherical structures
- density change caused by melting

the longer the irradiation...

... the larger the radius

at high-rep rate: internal "point-source of heat"

Outline

- femtosecond micromachining
- low-energy machining
- applications

waveguide micromachining

Opt. Lett. 26, 93 (2001)

waveguide micromachining

Opt. Lett. 26, 93 (2001)

structures guide light

Opt. Lett. 26, 93 (2001)

photonic fabrication techniques

	fs micromachining	other
loss (dB/cm)	< 3	0.1–3
bending radius	36 mm	30–40 mm
Δn	2 x 10 ⁻³	10 ⁻⁴ – 0.5
3D integration	Υ	Ν

photonic devices

all-optical sensor

sensor gap

calibration

sensor response to 100 Hz acoustic wave

ideal tool for ablating (living) tissue

- standard biochemical tools: species selective
- fs laser "nanosurgery": site specific

Q: can we probe the dynamics of the cytoskeleton?

actin fiber network of a live cell

cut a single fiber bundle

cut a single fiber bundle

gap widens with time

Applications

dynamics provides information on in vivo mechanics

Summary

great tool for

• "wiring light"

micromanipulating the machinery of life

Summary

- important parameters: focusing, energy, repetition rate
- nearly material independent
- two regimes: low and high repetition rate
- high-repetition rate (thermal) machining fast, convenient

Funding:

Army Research Office National Science Foundation

for a copy of this presentation:

http://mazur.harvard.edu

nature

10tor

Follow me!

doogle search finn cening bucky

mazur			

Google Search	'm Feeling Lucky
---------------	------------------

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Funding:

Army Research Office National Science Foundation

for a copy of this presentation:

http://mazur.harvard.edu

nature

10tor

Follow me!