Fabricating nanostructured TiO₂ by femtosecond laser irradiating titanium

PIERS 2012 Kuala Lumpur, Malaysia, 28 March 2012

Renee Sher

Yu-Ting Lin

Kasey Phillips

Ben Franta

and also....

Marc Winkler **Eric Diebold** Haifei Albert Zhang William Whitney Dr. Brian Tull **Dr. Jim Carey Prof. Tsing-Hua Her Dr. Shrenik Deliwala Dr. Richard Finlay Dr. Michael Sheehy** Dr. Claudia Wu Dr. Rebecca Younkin **Prof. Catherine Crouch** Prof. Mengyan Shen Prof. Li Zhao

Dr. Elizabeth Landis Dr. John Chervinsky Dr. Joshua Levinson

Prof. Michael Aziz Prof. Cynthia Friend Prof. Howard Stone Prof. Tonio Buonassisi (MIT) Prof. Silvija Gradecak (MIT) Dr. Bonna Newman (MIT) Joe Sullivan (MIT) Matthew Smith (MIT)

Prof. Augustinus Asenbaum (Vienna)

Dr. François Génin (LLNL) Mark Wall (LLNL)

Dr. Richard Farrell (RMD) Dr. Arieh Karger (RMD) Dr. Richard Meyers (RMD)

Dr. Pat Maloney (NVSED)

Dr. Jeffrey Warrander (ARDEC)

...and the people at SiOnyx

irradiate with 100-fs 10 kJ/m² pulses

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

laser treatment causes:

- surface structuring
- inclusion of dopants

substrates:

Si

substrates:

Si

substrates:

Si

solar radiation spectrum

solar radiation spectrum

solar radiation spectrum

increase efficiency by:

1/24/03

- increasing surface area
- shifting band edge

S.F.E.S

500 pulses: ripples → **spikes**

polarization

polarization

texturing

N = 2

interference ripples (perpendicular to polarization)

N = 2

interference ripples (perpendicular to polarization)

N = 5

coarsened ridges (perpendicular to ripples)

N = 2

interference ripples (perpendicular to polarization)

N = 5

coarsened ridges (perpendicular to ripples)

N = 10

beads sharpening into spikes (isotropic)

2 distinct length scales:

ripples

ridges/spikes

2 distinct length scales:

- ripples (laser wavelength)
- ridges/spikes

2 distinct length scales:

- ripples (laser wavelength)
- ridges/spikes (longest capillary wave)

melt depth d and melt duration τ limit capillary wavelength

$$\lambda = \left[\frac{\sigma d}{\rho}\right]^{\frac{1}{4}} \sqrt{2\pi\tau}$$

melt depth d and melt duration τ limit capillary wavelength

$$\lambda = \left[\frac{\sigma d}{\rho}\right]^{\frac{1}{4}} \sqrt{2\pi\tau}$$

• longest wavelenth \approx spike separation (5 $\mu m)$

melt depth d and melt duration τ limit capillary wavelength

$$\lambda = \left[\frac{\sigma d}{\rho}\right]^{\frac{1}{4}} \sqrt{2\pi\tau}$$

- longest wavelenth \approx spike separation (5 µm)
- spike spacing & capillary wavelength increase with fluence

two processes: melting and ablation

different thresholds:

melting: 1.5 kJ/m²

ablation: 3.1 kJ/m²

ероху		
laser affected region		
substrate		
100 nm		

decouple ablation from melting

decouple ablation from melting

secondary ion mass spectrometry

1 part in 10⁶ sulfur introduces donor states in gap

Janzén et al., Phys. Rev. B 29, 1907 (1984)

1 part in 10⁶ sulfur introduces donor states in gap

Janzén et al., Phys. Rev. B 29, 1907 (1984)

at high concentration states broaden into band

10⁻⁶ sulfur doping

laser-doped S:Si

laser-doped S:Si

laser-doped S:Si

doping creates intermediate band

TiO₂ density of states

structuring TiO₂ in N₂ doesn't work

50 pulses @ 2.5 kJ/m²

oxygen is incorporated!

oxygen is incorporated!

nitrogen peak appears...

... but nitrogen not chemically incorporated

... but nitrogen not chemically incorporated

with both nitrogen and oxygen...

... just 1% of oxygen prevents nitrogen incorporation...

... although oxygen is incorporated

can get N₂ or O₂ incorporated, but not both

anneal N:Ti sample in O₂ (1h @ 900 K)

after annealing

anneal N:Ti sample in O₂ (1h @ 900 K)

...nitrogen anneals out...

...but Raman spectrum shows TiO₂ is formed

...but Raman spectrum shows TiO₂ is formed

...but Raman spectrum shows TiO₂ is formed

how about incorporating chromium with oxygen?

evaporate 10 – 70 nm chromium on titanium...

...place in oxygen atmosphere...

...irradiate with laser...

...and raster scan to structure

2

titanium/chromium in oxygen

X-ray photoelectron spectroscopy

both chromium and oxygen incorporated!

Summary

Can produce:

microstructured TiO₂

can dope TiO₂ with Cr, but not N

Army Research Office DARPA Department of Energy NDSEG National Science Foundation

Funding:

for more information and a copy of this presentation:

http://mazur.harvard.edu

doogle search finn cening bucky

mazur			

Google Search	'm Feeling Lucky
---------------	------------------

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Army Research Office DARPA Department of Energy NDSEG National Science Foundation

Funding:

for more information and a copy of this presentation:

http://mazur.harvard.edu

