# TiO<sub>2</sub> nanophotonic waveguides for on-chip nonlinear optical devices

<u>Christopher C. Evans</u>, <u>Orad Reshef</u>, Jonathan D. B. Bradley, Jennifer T. Choy, Parag B. Deotare, Marko Loncar and Eric Mazur



Photonics West 2012 January 23, 2012



# Introduction

### TiO<sub>2</sub> Material Properties

Large ultrafast nonlinearity:30 x silicaHigh index of refraction:2.5Wide bandgap:3.1 eV

Low two-photon absorption:  $\geq$  800 nm

Several polymorphs: Rutile, Anatase, Brookite and Amorphous

## Outline

#### Fabrication

### Linear device properties

### Nonlinear measurement

Conclusions

### Deposition



Reactive Sputtering Titanium with Oxygen Temp: 20–350° C Pressure: 2 mTorr O<sub>2</sub> flow: 4.4–20 sccm



### Sputtering

Deposition Temperature: 20° C



#### Depostion Temperature 350° C



#### Sputtering Amorphous (20° C) Anatase (350° C) 141 intensity (a.u.) intensity (a.u.) 399 514 639 100 300 500 700 100 300 500 700 Raman shift (cm<sup>-1</sup>) Raman shift (cm<sup>-1</sup>)













300 nm waveguides



Silica



## Outline

#### Fabrication

### Linear device properties

### Nonlinear measurement

Conclusions



### Amorphous TiO<sub>2</sub>



### Waveguiding losses



### Anatase TiO<sub>2</sub>



### Waveguiding losses















## Outline

#### Fabrication

### Linear device properties

### Nonlinear measurement

Conclusions











### Diagram of setup











### Mode profile



### Mode profile



#### effective nonlinearity is 14 W<sup>-1</sup> m<sup>-1</sup>





**Nonlinear Simulation** 



**Nonlinear Simulation** 



**Nonlinear Simulation** 

Nonlinear pulse propagation at 800 nm

Effective nonlinearity: ~ 10 W<sup>-1</sup>m<sup>-1</sup>

Positive nonlinear index of refraction

Pulse energies of only a few pJ

# Conclusions

Titanium Dioxide: material for Integrated Photonics

Two-polymorphs: Amorphous and Anatase

Deposition for low-loss planar waveguides

Nanoscale structuring capabilities

Waveguides with losses down to 13 db/cm

Toolset of basic devices

# Conclusions

Titanium Dioxide: material for Nonlinear Optics Compatible with 800-nm nonlinear optics Nonlinear pulse propagation in TiO<sub>2</sub> wavguides High effective nonlinear index ~ 10 W<sup>-1</sup>m<sup>-1</sup> Picojoule nonlinear optics

### Conclusions

### Titanium dioxide:

#### a novel material for integrated nonlinear optics

### Funding provided by:

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

Fonds de recherche sur la nature et les technologies Québec 😫 😫

![](_page_48_Picture_5.jpeg)

![](_page_48_Picture_6.jpeg)

![](_page_48_Picture_7.jpeg)

![](_page_48_Picture_8.jpeg)

![](_page_48_Picture_9.jpeg)

Chris Evans

Orad Reshef

Jon Bradley

Eric Mazur

### **Additional Thanks:**

Erwin Marti Markus Pollnau Kasey Phillips Francois Parsy Grisel Rivera

Ruwan Senaratne Stephanie Scwartz

![](_page_49_Picture_4.jpeg)

![](_page_49_Picture_5.jpeg)

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_7.jpeg)

Chris Evans

Orad Reshef

Jon Bradley

Eric Mazur

### Any questions?

![](_page_50_Picture_1.jpeg)

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_50_Picture_4.jpeg)

Chris Evans

Orad Reshef

Jon Bradley

Eric Mazur