Simultaneous multiphoton absorption in rutile (TiO₂) across the half-bandgap

<u>Christopher C. Evans</u>, Jonathan D. B. Bradley, Erwin A. Martí-Panameño and Eric Mazur

Photonics West 2012 January 26, 2012

TiO₂ Material Properties

Large ultrafast nonlinearity:30 x silicaHigh index of refraction:2.5Wide bandgap:3.1 eV

Low two-photon absorption: \geq 800 nm

Several polymorphs: Rutile, Anatase, Brookite and Amorphous

Nonlinear material properties: z-scan

Nonlinear material properties: z-scan

Nonlinear material properties: z-scan

Nonlinear refraction (n₂ at 800 nm)

Nonlinear refraction (n₂ at 800 nm)

high nonlinearity ≠ working device

$$n = n_0 + n_2 I$$

high nonlinearity *≠* working device

Full modulation requires <u>at least</u> a 2π nonlinear phase shift

high nonlinearity *≠* working device

Full modulation requires <u>at least</u> a 2π nonlinear phase shift

$$\phi_{NL} = \frac{2\pi n_2}{\lambda} IL$$

high nonlinearity *≠* working device

Full modulation requires <u>at least</u> a 2π nonlinear phase shift

$$\phi_{NL} = \frac{2\pi n_2}{\lambda} IL$$

$$\phi_{NL} = \frac{2\pi n_2}{\lambda} \int_0^L I(z) dz$$

high nonlinearity *≠* working device

Full modulation requires <u>at least</u> a 2π nonlinear phase shift

 $\frac{n_2}{\beta\lambda} > 1$

 $\frac{n_2 I_0}{\alpha \lambda} > 1$

high nonlinearity *≠* working device

Full modulation requires <u>at least</u> a 2π nonlinear phase shift

 $\frac{n_2}{\beta\lambda} > 1$ two-photon absorption figure of merit

$$\frac{n_2 I_0}{\alpha \lambda} > 1$$

one-photon absorption figure of merit

high nonlinearity *≠* working device

Full modulation requires <u>at least</u> a 2π nonlinear phase shift

 $\frac{n_2}{\beta\lambda} > 1$ material limit

 $\frac{n_2 I_0}{\alpha \lambda} > 1$

"fabrication" limit

 $\frac{n_2}{\beta\lambda} > 1$

1PA FOM

2PA FOM

3PA FOM

Outline

Experimental

Modeling

Analysis

Conclusions

Single crystal rutile samples:

Floating-zone method 1-mm thick Two-cuts: (001)-cut, $E \perp c$ only (100)-cut, $E \perp c$ and $E \parallel c$

Experimental setup

Laser Parameters

λ_0	$2\hbar\omega$	$\Delta \lambda$	τ
(nm)	(eV)	(nm)	(fs)
774	3.20	4	290
813	3.05	10	174
800	3.10	30	50

Laser Parameters

λ_0	M^2	w_{x0}/w_{y0}	I _{0,max}
(nm)			(GW/mm ²)
774	< 1.13	0.78	0.21
813	< 1.18	0.92	0.32
800	< 1.06	0.95	1.04

Outline

Experimental

Modeling

Analysis

Conclusions

$$I_{in}[x, y, z, P(t)] = \frac{2P(t)}{\pi w_x(z)w_y(z)} \exp\left[-\frac{2x^2}{w_x^2(z)} - \frac{2y^2}{w_y^2(z)}\right]$$

Mixed multiphoton model

$$W_{in}[x, y, z, P(t)] = \frac{2P(t)}{\pi w_x(z)w_y(z)} \exp\left[-\frac{2x^2}{w_x^2(z)} - \frac{2y^2}{w_y^2(z)}\right]$$
$$w_x(z) = \sqrt{w_{x0}^2 + \left(\frac{M_x^2\lambda_0}{\pi w_{x0}}\right)^2 (z - z_{x0})^2}$$

V

$$\alpha(I) = \alpha_0 + \beta I + \gamma I^2$$

$$w_{x}(z) = \sqrt{w_{x0}^{2} + \left(\frac{M_{x}\lambda_{0}}{\pi w_{x0}}\right)(z - z_{x0})}$$

$$\alpha(I) = \alpha_0 + \beta I + \gamma I^2$$

$$\frac{dI}{dz'} = -\alpha(I)I$$

$$U_{in}[x, y, z, P(t)] = \frac{2P(t)}{\pi w_x(z) w_y(z)} \exp\left[-\frac{2x^2}{w_x^2(z)} - \frac{2y^2}{w_y^2(z)}\right]$$

$$w_{x}(z) = \sqrt{w_{x0}^{2} + \left(\frac{M_{x}^{2}\lambda_{0}}{\pi w_{x0}}\right)^{2} (z - z_{x0})^{2}}$$

$$\alpha(I) = \alpha_0 + \beta I + \gamma I^2$$

$$\frac{dI}{dz'} = -\alpha(I)I$$

$$T(z) = \frac{\int P(t)T[z,P(t)]dt}{\int P(t) dt} = \frac{E_{out}(z)}{E_{in}}$$

Fitting method

Fitting method

Outline

Experimental

Modeling

Analysis

Conclusions

E||c|

 $2\hbar\omega=3.2 \text{ eV}$

 $2\hbar\omega=3.2 \text{ eV}$

3.1 eV

E||c|

 $2\hbar\omega=3.05 \text{ eV}$

Fitting Results

extraordinary polarization $(E \parallel c)$

λ_0	$2\hbar\omega$	β	γ
(nm)	(eV)	(mm/GW)	(mm^3/GW^2)
774	3.20	0.89	1.8
813	3.05	<10 ⁻⁷	0.9
		±15%	factor of 2

Fitting Results

extraordinary polarization $(E \parallel c)$

λ_0	$2\hbar\omega$	β	γ
(nm)	(eV)	(mm/GW)	(mm^3/GW^2)
774	3.20	0.89	1.8
813	3.05	<10 ⁻⁷	0.9
		±15%	factor of 2

We can see the indirect bandgap at 3.1 eV

 $E \perp c$

 $2\hbar\omega=3.2 \text{ eV}$

3.1 eV $2\hbar\omega = 3.05 \text{ eV}$

Fitting Results

ordinary polarization	$(E \perp c)$
-----------------------	---------------

λ_0	$2\hbar\omega$	β	γ
(nm)	(eV)	(mm/GW)	(mm^3/GW^2)
774	3.20	0.54	1.1
813	3.05	0.08	0.8
		±15%	factor of 2

Direct forbidden bandgap at 3.062 eV

K. Watanabe and K. Inoue, Phys. Rev. B 41, 7957-7960 (1990).

Fitting Results

extraordinary polarization $(E \parallel c)$

λ_0	2ħω	β	γ	<u>n</u> 2	
(nm)	(eV)	(mm/GW)	(mm^3/GW^2)	βλ	
774	3.20	0.89	1.8	1.1	
813	3.05	<10 ⁻⁷	0.9	>10 ⁶	
		±15%	factor of 2		

Fitting Results

ordinary polarization $(E \perp c)$

λ_0	$2\hbar\omega$	β	γ	<u></u>	
(nm)	(eV)	(mm/GW)	(mm^3/GW^2)	βλ	
774	3.20	0.54	1.1	1.9	
813	3.05	0.08	0.8	12.1	
		±15%	factor of 2		

Fitting Results

extraordinary polarization $(E \parallel c)$

λ_0	$2\hbar\omega$	β	γ	<u>n</u> 2	I_{\max}^{3PA}
(nm)	(eV)	(mm/GW)	(mm^3/GW^2)	βλ	(GW/mm ²)
774	3.20	0.89	1.8	1.1	0.57
813	3.05	<10 ⁻⁷	0.9	>10 ⁶	1.10
		±15%	factor of 2		

Fitting Results

ordinary polarization $(E \perp c)$

λ_0	$2\hbar\omega$	β	γ	<u>n</u> 2	I_{\max}^{3PA}
(nm)	(eV)	(mm/GW)	(mm^3/GW^2)	βλ	(GW/mm ²)
774	3.20	0.54	1.1	1.9	0.93
813	3.05	0.08	0.8	12.1	1.20
		±15%	factor of 2		

Conclusions

Two- and three-photon absorption in rutile

Two-photon absorption is below 1 mm/GW

Three-photon absorption is below 2 mm³/GW²

Negligible 2PA at 813 nm for *E*||*c*

Conclusions

Two-photon figures of merit greater than 12 for λ_0 > 813 nm.

Three-photon absorption limits peak intensity to ~0.50 GW/mm².

Rutile is a promising for all-optical switching for wavelengths greater than 800 nm.

Funding provided by:

Chris Evans

Jon Bradley

Erwin Martí

Eric Mazur

Any questions?

C. C. Evans, J. D. B. Bradley, E. A. Martí-Panameño, and E. Mazur, "Mixed two- and three-photon absorption in bulk rutile (TiO₂) around 800 nm," Opt. Express 20, 3118-3128 (2012).

Chris Evans

Jon Bradley

Erwin Martí

Eric Mazur