Reinventing the light switch: logic with photons

Christopher C. Evans University of Massachusetts, Lowell Lowell, MA, 25 April 2012

Chris Evans

Orad Reshef

Jon Bradley

Eric Mazur

and also....

Jennifer Choy Parag Deotare Katia Shtrykova

Kasey Phillips Ruwan Senaratne Francois Parsy Grisel Rivera Batista Stephanie Scwartz

Prof. Erwin Martí-Panameño (BUAP) Prof. Marco Loncar (Harvard) Prof. Markus Pollnau (Twente) Prof. Erich Ippen (MIT)

Prof. Limin Tong (Zhejiang)

Dr. Geoff Svacha Dr. Rafael Gattass Prof. Tobias Voss

telecommunication bands 1550 nm

telecommunication bands 1300 and 1550 nm

interconnect band 850 nm

日日日の一ジャーの第二年に

112

E.

n de la

Blue Gene/P

large divergence, small NL interactions

strong confinement, sustained NL interactions

nanowire waveguide

nanowire waveguide

self-phase modulation: $n = n_0 + n_2 I$

self-phase modulation: $n = n_0 + n_2 I$

self-phase modulation: $n = n_0 + n_2 I$

self-phase modulation: $n = n_0 + n_2 I$

self-phase modulation: $n = n_0 + n_2 I$

large evanescent field

high effective nonlinearity

silica fiber at 800 nm

routing light

splitters for devices

Nanoletters, 5, 259 (2005)

1 all-optical logic

in

output = transmitted cw + ccw power

input electric field amplitude E_{in}

coupling parameter: ρ

phase accumulation over path length of loop

coupling parameter: ρ

output is sum of transmitted cw and ccw

accumulated phase:

$$\phi = k_o n$$

accumulated phase:

$$\phi = k_o n$$

nonlinear index:

$$n = n_o + n_2 I = n_o + n_2 \frac{P_i}{A_{eff}}$$

accumulated phase:

$$\phi = k_o n$$

nonlinear index:

$$n = n_o + n_2 I = n_o + n_2 \frac{P_i}{A_{eff}}$$

nonlinear parameter:

$$\gamma = n_2 \frac{k_o}{A_{eff}}$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

for 50-50 coupler:

 $\rho = 0.5$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

for 50-50 coupler:

$$\rho = 0.5$$

no transmission:

$$\frac{E_{out}^2}{E_{in}^2} = 0$$

Sagnac interferometer transmission

when $\rho \neq 0.5$:

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

nonlinear nanogate

for NAND gate need ouput with no input

for NAND gate need ouput with no input

for NAND gate need ouput with no input

universal NAND gate

universal NAND gate

universal NAND gate

what about a Gaussian pulse?

dispersion can change the intensity

modal dispersion

material dispersion

waveguide dispersion

engineering dispersion

waveguide dispersion

engineering dispersion

waveguide dispersion

pulses in a Sagnac

waveguide dispersion

solitons: "light bullets"!

waveguide dispersion

soliton pulses in a Sagnac

soliton pulses in a Sagnac

soliton pulses in a Sagnac

Boyd, Nonlinear optics, 3rd ed.

Boyd, Nonlinear optics, 3rd ed.

Boyd, Nonlinear optics, 3rd ed.

2

... comparatively small

linear losses

two-photon absorption

two-photon absorption limitation

Q. Lin et. al., Appl. Phys. Lett. 91(2007).

1 all-optical logic

two-photon absorption limitation in silicon

Q. Lin et. al., Appl. Phys. Lett. 91(2007).

1 all-optical logic

two-photon absorption limitation in silicon

Q. Lin et. al., Appl. Phys. Lett. 91(2007).

1 all-optical logic

M. Sheik-Bahae et. al., Physical Review Letters 65, 96 (1990).

$$\frac{hc}{\lambda} < \frac{E_g}{2}$$

M. Sheik-Bahae et. al., Physical Review Letters 65, 96 (1990).

1 all-optical logic

M. Sheik-Bahae et. al., Physical Review Letters 65, 96 (1990).

M. Sheik-Bahae et. al., Physical Review Letters 65, 96 (1990).

all-optical logic 1

Titanium dioxide (TiO₂)

TiO₂ material properties

large nonlinearity: $30 \times silica$ high index of refraction:2.5wide bandgap:3.1 eVlow two-photon absorption: $\geq 800 \text{ nm}$

several phases: rutile, anatase, brookite and amorphous

Evans et. al., Opt. Express 20, 3118-3128 (2012).

deposition: low-loss films

planar waveguide

nano-scale structuring

Silica

TiO₂

visible light propagation

straight rib waveguides

50 µm

amorphous waveguides

anatase waveguides

 $\lambda = 780 \text{ nm}$

1 all-optical logic

microbends

microbends

variable splitters

variable splitters

variable splitters

1 all-optical logic

more complex devices

more complex devices

4 µm

 $\gamma \sim 40 \text{ W}^{-1}\text{m}^{-1}$

(~40,000 x silica fiber)

2

1 all-optical logic

NL materials

up to 4x stronger anomalous disperison than silica nanowires

1 all-optical logic

2 NL materials

... spanning the communications octave!

 $\gamma \sim 10 \text{ W}^{-1}\text{m}^{-1}$

(10,000x silica fiber)

2

1 all-optical logic

NL materials

switching photons with photons

introduced a novel material

switching photons with photons

introduced a novel material

... close to the first nonlinear Sagnac in TiO₂

Funding:

National Science Foundation

Nanoscale Science and Engineering Center Harvard Quantum Optics Center Department of Energy

for more information and a copy of this presentation:

http://mazur.harvard.edu

