Submicrometer-width TiO₂ waveguides

Christopher C. Evans, J.D.B. Bradley, J.T. Choy, O. Reshef P.B. Deotare, M. Loncar, and E. Mazur CLEO San Jose, CA, 7 May 2012

and also....

Katia Shtrykova

Kasey Phillips

Ruwan Senaratne

Francois Parsy

Grisel Rivera Batista

Stephanie Scwartz

Prof. Erich Ippen (MIT)

Prof. Erwin Martí-Panameño (BUAP)

Prof. Markus Pollnau (Twente)

telecommunications band 1550 nm

interconnect band 850 nm

- DDDD - EX

日本にいた日本王王で

112

T

Blue Gene/P

Titanium dioxide (TiO₂)

TiO₂ material properties

high index of refraction:2.5wide bandgap:3.1 eVlarge nonlinearity:25 x silicalow two-photon absorption: $\geq 800 \text{ nm}$

several phases:

rutile, anatase, brookite and amorphous

Evans et. al., Opt. Express 20, 3118-3128 (2012).

reactive sputtering titanium with oxygen temp: $20-350^{\circ}$ C pressure: 2 mTorrO₂ flow: 4.4-20 sccm

deposition temperature 350° C

n = 2.32 (1550 nm)

n = 2.37 (1550 nm)

What about losses?

planar waveguides: decoupling losses

planar losses

planar losses

planar losses

amorphous

anatase

amorphous TiO₂

400 nm

silica

structuring

anatase TiO₂

200 nm

fluoropolymer cladding

amorphous waveguides

30 dB/cm

200 um

 $\lambda = 632 \text{ nm}$

amorphous waveguides

anatase waveguides

60 dB/cm

 $\lambda = 632 \text{ nm}$

anatase waveguides

anatase waveguides

microbends

microbends

microbends

directional couplers

directional couplers

variable splitters

 $\gamma \sim 40 \text{ W}^{-1}\text{m}^{-1}$

(~40,000 x silica fiber)

2 linear devices

... spanning the communications octave!

... spanning the communications octave!

 $\gamma \sim 5 \text{ W}^{-1}\text{m}^{-1}$

(5,000x silica fiber)

2 linear devices

Summary

established fabrication of TiO₂ waveguides

losses sufficient for mm-length devices

demonstrated optical nonlinearities in TiO₂

Thank you

Any questions?

Funding:

National Science Foundation

Nanoscale Science and Engineering Center Harvard Quantum Optics Center Department of Energy

for more information and a copy of this presentation:

http://mazur.harvard.edu

