Peer Instruction: Engaging Students in the Classroom

MECESUP Program on Innovative Teaching and Learning RI **Harvard University** Cambridge, MA, 3 October 2012

Peer Instruction: Engaging Students in the Classroom

@eric_mazur **MECESUP Program on Innovative Teaching and Learning Harvard University** Cambridge, MA, 3 October 2012

- no ON/OFF button
- only last "click" counts
- display shows recorded answer

www.TurningTechnologies.com

www.TurningTechnologies.com

www.TurningTechnologies.com

Think of something you are good at

Think of something you are good at

How did you become good at this?

Became good at it by:

- 1. trial and error
- 2. lectures
- 3. practicing
- 4. apprenticeship
- 5. other

better pay attention!

What happens in a lecture?

lecturers talk while other people are sleeping

(Albert Camus)

education is not just information transfer

education is not just information transfer

education is not just information transfer

only one quarter of maximum gain realized

R.R. Hake, Am. J. Phys. 66, 64 (1998)

not transfer but assimilation of information is key

conventional problems misleading

Calculate:

(a) current in 2- Ω resistor

(b) potential difference

between *P* and *Q*

are the basic principles understood?

When S is closed, what happens to:

(a) intensities of A and B?

(b) intensity of C?

(c) current through battery?

(d) potential difference across

A, B, and C?

(e) the total power dissipated?

conventional

conceptual

conventional

conceptual

education

1. transfer of information

1. transfer of information

2. assimilation of that information

1. transfer of information (in class)

2. assimilation of that information

1. transfer of information (in class)

2. assimilation of that information (out of class)

Should focus on THIS!

1. transfer of information (I)

2. assimilation of that information (out of class)

1. transfer of information (in class)

2. assimilation of that information (out of class)

1. transfer of information (out of class)

2. assimilation of that information (in class)

1. transfer of information (out of class)

2. assimilation of that information (in class)

thermal expansion

When the plate is uniformly heated, the diameter of the hole

- 1. increases.
- 2. stays the same.
- 3. decreases.

When the plate is uniformly heated, the diameter of the hole

1. increases 2. ctave the same. 3. decreases

When the plate is uniformly heated, the diameter of the hole

- 1. increases.
- 2. stays the same.
- 3. decreases.

Before I tell you the answer...

You...

1. made a commitment

- 1. made a commitment
- 2. externalized your answer

- 1. made a commitment
- 2. externalized your answer
- 3. moved from the answer/fact to reasoning

- 1. made a commitment
- 2. externalized your answer
- 3. moved from the answer/fact to reasoning
- 4. became emotionally invested in the learning process

When the plate is uniformly heated, the diameter of the hole

- 1. increases.
- 2. stays the same.
- 3. decreases.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

- 1. increases. V
- 2. stays the same.
- 3. decreases.

first year of implementing Pl

first year of implementing Pl

first year of implementing PI

PI

3 test

2 PI

what about problem solving?

So better understanding leads to better problem solving!

So better understanding leads to better problem solving!

(but "good" problem solving doesn't always indicate understanding!)

in a lecture, students...

in a lecture, students...

1. don't pay utmost attention

in a lecture, students...

1. don't pay utmost attention

2. think they know it

in a lecture, students...

1. don't pay utmost attention

2. think they know it

3. are not confronted with misconceptions

Security 1. don't pay utmost attention

2. think they know

of fonted with misconceptions

in a lecture, students...

an illusion...

Education is not just about:

- transferring information
- getting students to do what we do

Education is not just about:

- transferring information
- getting students to do what we do

active participation a must!

not technology, but pedagogy matters

First International Asia-Pacific Conference on Peer Instruction

mazur@harvard.edu

Beijing, China 14-16 December 2012

PeerInstruction.net

Funding:

National Science Foundation

for a copy of this presentation:

mazur.harvard.edu

		 _

Google Search	I'm Feeling Lucky
---------------	-------------------

mazur			

n Feeling Lucky
1

mazur		

mazur		

Google Search	I'm Feeling Lucky
	1

Funding:

National Science Foundation

for a copy of this presentation:

mazur.harvard.edu

