Optimizing Anatase-TiO₂ Deposition for Low-loss Waveguides

Lili Jiang

Christopher Evans, Orad Reshef, Eric Mazur

Harvard University

Feb 5, 2013

250 µm

TiO₂ Nonlinear Optics in Nanophotonic Devices

INTRODUCTION Nanophotonic Devices output Input Β Α 0 0 0 0 1 1 0 1 1 1 1 0 an XOR gate 2000 nm

Optical XOR Gate

INTRODUCTION TiO_2 High transparency for $\lambda \ge 400$ nm High refractive index: $n_0 = 2.4$ at 800 nm

High nonlinearity: 30 x SiO₂ at 1064 nm

Waveguide Fabrication

Material

INTRODUCTION TiO_2 SiO₂ Waveguide Fabrication Material Deposition TiO₂ TiO₂ Thin **F**ilm Bulk

INTRODUCTION $\overline{\text{TiO}}_2$ SiO₂ Waveguide Fabrication Material Deposition Fabrication TiO₂ TiO_2 TiO₂ Waveguide Thin **Film** Bulk

Waveguide Fabrication

INTRODUCTION

Deposition

TiO₂ Thin Film

l\/m	n rn	he	
			-102

Amorphous

Anatase

Brookite	Rutile

Nmor	nhe ni	
· J · · · · · ·		

Amorphous

Anatase

Brookite	

Difficult to deposit

Rutile Difficult to deposit

	Anatase
Brookite Difficult to deposit	Rutile Difficult to deposit

Amorphous Stability?	Anatase
Brookite Difficult to deposit	Rutile Difficult to deposit

Amorphous Stability?	Anatase
High deposition rate	Low deposition rate
Brookite	Rutile
Difficult to deposit	Difficult to deposit

Amorphous	Anatase 200 nm
Stability?	Verv Stable
High deposition rate	Low deposition rate
Low Loss	High Loss
Brookite Difficult to deposit	Rutile Difficult to deposit

Amorphous	Anatase 200 nm
Stability?	Very Stable
High deposition rate	Low deposition rate
Low Loss	High Loss
Brookite Difficult to deposit	Rutile Difficult to deposit

Amorphous	Anatase 200 nm
Stability?	Very Stable
High deposition rate	Low deposition rate
Low Loss	High Loss
Brookite Difficult to deposit	Rutile Difficult to deposit

Objective

To optimize Anatase-TiO₂ deposition for low-loss waveguides

Method and Material

Sputtering System

http://cns.fas.harvard.edu/facilities/tool_detail.php?MID=130

http://www.ajaint.com/whatis.htm

Method

Reactive Sputtering: amorphous Annealing: anatase

Method

Reactive Sputtering: amorphous Annealing: anatase

Annealing

Amorphous

Amorphous

Furnace

Heat

Amorphous

Anatase

BEFORE ANNEALING

AFTER ANNEALING

BEFORE ANNEALING

AFTER ANNEALING

Reactive Sputtering: anatase

Oxygen flow rate

- Oxygen flow rate
- Power

- Oxygen flow rate
- Power
- Temperature

- Oxygen flow rate
- Power
- Temperature
- Chamber Pressure

- Oxygen flow rate
- Power
- Temperature
- Chamber Pressure

O₂ Flow Rate and Deposition Rate

O₂ Flow Rate and Deposition Rate

Oxygen Flow Rate (Standard Cubic Centimeters per Minute)

O₂ Flow Rate and Deposition Rate

Oxygen Flow Rate (Standard Cubic Centimeters per Minute)

O₂ Flow Rate and Grain Size

RESULTS

O₂ Flow Rate and Grain Size

100 nm

O₂ Flow Rate and Grain Size

Oxygen Flow Rate (Standard Cubic Centimeters per Minute)

RESULTS

Lower losses?

Loss Measurement

O₂ Flow Rate and Loss

Oxygen Flow Rate (Standard Cubic Centimeters per Minute)

RESULTS

RESULTS

Deposition Recipe

Power: 200 *W*

Ar: 40 sccm

O₂ : 14 sccm

Pressure: 2 mT

Temperature: 350 °C

Sputtering System

Deposition Recipe

Sputtering System

Power: 200 *W*

Ar: 40 sccm

O₂ : 14 sccm

Pressure: 2 *mT*

Temperature: 350 °C

>> **Dep Rate**: 0.7 *nm/min*

Loss (dB/cm): 1 *dB/cm*

Conclusions

 Nanoscaled cracks on the surface of annealed sample degrades its waveguiding ability

 Decreasing O₂ flow rate speeds up deposition and gives smaller grain size

Present a better recipe with loss at 1 dB/cm at 1550 nm

ACKNOWLEDGEMENT

Acknowledgements

Eric Mazur Christopher Evans Orad Reshef Center for Nanoscale System

- Harvard Physics Department
- Mazur Group

Thank you!