Titanium dioxide for nanophotonics

Orad Reshef

SPIE Optics and Photonics San Diego, California 29 August, 2013

 $\lambda = 633$ nm

500 µm

Silica nanowires

Silica nanowires

Silica nanowires

aerogel

Fibers are hard to maneuver!

420 nm

420 nm

Nanoletters, 5, 259 (2005)

Photonic Integrated Circuits

Diamond

Chalcogenide Glass

Silicon

M. Loncar et. al. *Nano Letters* (2012) L. Kimerling et. al. *Optics Letters* (2008) M. Lipson et. al. *Nature Photonics* (2009)

Material

What are we looking for in a material?

Convenience

Inexpensive

Non-toxic

Abundant

Technical

Large linear index n_0

Large nonlinear index n_2

Transparency at wavelengths of interest

Operation wavelength

telecommunication 1550 nm

Operation wavelength

I

Blue Gene/P

...to the interconnect band at 850 nm across the telecom octave

Anatase

Brookite

Rutile

Wikipedia.org, "Titanium dioxide"

Large refractive index 2.4

Large nonlinear index

9.7x10⁻¹⁹ m²/W (40 x silica)

Large transparency

Absorption edge: 400 nm Low two-photon absorption: > 800 nm

Titanium dioxide for nanophotonics

Fabrication Linear photonics Nonlinear optics

Titanium dioxide for nanophotonics

Fabrication

Linear photonics Nonlinear optics

Thin films

Thin film characterization

Deposition temperature: 20°C

Deposition temperature: 350°C

Thin film characterization

Deposition temperature: 20°C

RMS Roughness: 0.4 nm

Deposition temperature: 350°C

RMS Roughness: 2.7 nm

Raman spectroscopy

Ellipsometry

Top-down view

Top-down view

Cross-sectional view at 45°

TiO₂

Cross-sectional view at 45°

Titanium dioxide for nanophotonics

Fabrication

Linear photonics

Nonlinear optics

 $\begin{array}{l} \lambda = 633 nm \\ \text{Amorphous} \\ \text{Anatase} \end{array} \begin{array}{l} 25 \text{ dB/cm} \\ 50 \text{ dB/cm} \end{array}$

500 µm

 $\lambda = 780$ nm

Amorphous 10 dB/cm

Anatase 20 dB/cm

 $\lambda = 1550$ nm

Amorphous < 4 dB/cm

Micro-scale bends

Racetrack ring resonator

Optics Letters, 37, 539 (2012)

Optics Letters, 37, 539 (2012)

Titanium dioxide for nanophotonics

Fabrication Linear photonics

Nonlinear optics

Nonlinear optics

Pulse broadens spectrally

Spectral broadening

Spectral broadening

Spectral Broadening

Spectral Broadening

Extracted nonlinear parameters

Kerr index		
λ	n ₂	equiv.
1565 nm	0.16 × 10 ⁻¹⁸ m²/W	5 x silica
794 nm	1.6 × 10 ⁻¹⁸ m ² /W	50 x silica

Extracted nonlinear parameters

Raman gain coefficient $6.6 \times 10^{-12} \text{ m/W}$ | 130 x silica

Green light generation

1565 nm

Manuscript in preparation

All-optical switching

All-optical switching

Future work

Raman gain

All-optical switch

Wavelength conversion

Summary

• Titanium dioxide is a cheap, abundant, non-toxic material with attractive properties.

• Promising platform for visible photonics.

• Nonlinear optics (spectral broadening, third harmonic generation) in the visible regime.

Chris Evans

Jon Bradley

Eric Mazur

Michael Moebius Sarah Griesse-Nascimento

Jennifer Choy Parag Deotare Marko Lončar

Katia Shtyrkova Erich Ippen Francois Parsy Ruwan Seranatne Lili Jiang Grisel Rivera Batista Stephanie Swartz

Harvard University Center for Nanoscale Systems

Harvard University Center for Nanoscale Systems

HARVARD Quantum Optics Center

Thank you

For a copy of this presentation: http://mazur.harvard.edu

