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what comes to mind if you think “physics”?



why is it that physics evokes these emotions?



it’s time to bring physics back to life!
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11.1 CirCular motion at Constant speed 255

motion. We therefore begin our analysis of rotational mo-

tion by describing circular motion. Circular motion occurs 

all around us. A speck of dust stuck to a spinning CD, a 

stone being whirled around on a string, a person on a Ferris 

wheel—all travel along the perimeter of a circle, repeating 

their motion over and over. Circular motion takes place in a 

plane, and so in principle we have already developed all the 

tools required to describe it. To describe circular and rota-

tional motion we shall follow an approach that is analogous 

to the one we followed for the description of translational 

motion. Exploiting this analogy, we can then use the same 

results and insights gained in earlier chapters to introduce a 

third conservation law.

11.1 Circular motion at constant speed

Figure 11.2 shows two examples of circular motion: a block 

dragged along a circle by a rotating turntable and a puck 

constrained by a string to move in a circle. The block and 

puck are said to revolve around the vertical axis through 

the center of each circular path. Note that the axis about 

which they revolve is external to the block and puck and 

perpendicular to the plane of rotation. This is the defini-

tion of revolve—to move in circular motion around an 

external center. Objects that turn about an internal axis, 

such as the turntable in Figure 11.2a, are said to rotate. 

These two types of motion are closely related because a 

rotating object can be considered as a system of an enor-

mous number of particles, each revolving around the axis 

of rotation.

The motion we have been dealing with so far in this 

text is called translational motion (Figure 11.1a). 

This type of motion involves no change in an ob-

ject’s orientation; in other words, all the particles in the 

object move along identical parallel trajectories. During 

rotational motion, which we begin to study in this chap-

ter, the orientation of the object changes, and the particles 

in an object follow different circular paths centered on 

a straight line called the axis of rotation (Figure 11.1b). 

Generally, the motion of rigid objects is a combination of 

these two types of motion (Figure 11.1c), but as we shall 

see in Chapter 12 this combined motion can be broken 

down into translational and rotational parts that can be 

analyzed separately. Because we already know how to 

describe translational motion, knowing how to describe 

rotational motion will complete our description of the 

motion of rigid objects.

As Figure 11.1b shows, each particle in a rotating object 

traces out a circular path, moving in what we call circular 

Figure 11.1 Translational and rotational motion of a rigid object.

(a) Translational motion

All points on object follow identical trajectories.

(b) Rotational motion

(c) Combined translation and rotation

All points on object trace circles centered on axis of rotation.

Di�erent points on object follow di�erent trajectories.

axis of rotation

Figure 11.2 Examples of circular motion.

(a) Block revolves on rotating turntable

(b) Tethered puck revolves on air table

Block revolves because

axis is external to it.

Turntable rotates 

because axis is internal to it.

axis of rotation

M11_MAZU0930_PRIN_Ch11_pp254-280.indd   255

18/09/13   12:50 PM



Pr inc iPles  &  Practice  ofP h ys i c s

e r i c  M a z u r

PrinciPles  &  Pract ice  of

P h ys i c s

e r i c  M a z u r

C
o

n
C

e
p

t
s

Q
u

a
n

t
ita

t
iv

e
 t

o
o

l
s

5.5 elastic collisions

5.6 inelastic collisions

5.7 Conservation of energy

5.8 explosive separations

5.1 Classification of collisions

5.2 Kinetic energy

5.3 internal energy

5.4 Closed systems

energy5

M05_MAZU0930_PRIN_Ch05_pp101-120.indd   101 02/09/13   4:22 PM

C
O

N
C

E
P

T
S

 

11.1 CirCular motion at Constant speed 255

motion. We therefore begin our analysis of rotational mo-

tion by describing circular motion. Circular motion occurs 

all around us. A speck of dust stuck to a spinning CD, a 

stone being whirled around on a string, a person on a Ferris 

wheel—all travel along the perimeter of a circle, repeating 

their motion over and over. Circular motion takes place in a 

plane, and so in principle we have already developed all the 

tools required to describe it. To describe circular and rota-

tional motion we shall follow an approach that is analogous 

to the one we followed for the description of translational 

motion. Exploiting this analogy, we can then use the same 

results and insights gained in earlier chapters to introduce a 

third conservation law.

11.1 Circular motion at constant speed

Figure 11.2 shows two examples of circular motion: a block 

dragged along a circle by a rotating turntable and a puck 

constrained by a string to move in a circle. The block and 

puck are said to revolve around the vertical axis through 

the center of each circular path. Note that the axis about 

which they revolve is external to the block and puck and 

perpendicular to the plane of rotation. This is the defini-

tion of revolve—to move in circular motion around an 

external center. Objects that turn about an internal axis, 

such as the turntable in Figure 11.2a, are said to rotate. 

These two types of motion are closely related because a 

rotating object can be considered as a system of an enor-

mous number of particles, each revolving around the axis 

of rotation.

The motion we have been dealing with so far in this 

text is called translational motion (Figure 11.1a). 

This type of motion involves no change in an ob-

ject’s orientation; in other words, all the particles in the 

object move along identical parallel trajectories. During 

rotational motion, which we begin to study in this chap-

ter, the orientation of the object changes, and the particles 

in an object follow different circular paths centered on 

a straight line called the axis of rotation (Figure 11.1b). 

Generally, the motion of rigid objects is a combination of 

these two types of motion (Figure 11.1c), but as we shall 

see in Chapter 12 this combined motion can be broken 

down into translational and rotational parts that can be 

analyzed separately. Because we already know how to 

describe translational motion, knowing how to describe 

rotational motion will complete our description of the 

motion of rigid objects.

As Figure 11.1b shows, each particle in a rotating object 

traces out a circular path, moving in what we call circular 

Figure 11.1 Translational and rotational motion of a rigid object.

(a) Translational motion

All points on object follow identical trajectories.

(b) Rotational motion

(c) Combined translation and rotation

All points on object trace circles centered on axis of rotation.

Di�erent points on object follow di�erent trajectories.

axis of rotation

Figure 11.2 Examples of circular motion.

(a) Block revolves on rotating turntable

(b) Tethered puck revolves on air table

Block revolves because

axis is external to it.

Turntable rotates 

because axis is internal to it.
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Self-quiz

1. Two carts are about to collide head-on on a track. The inertia of cart 1 is greater than the inertia of 

cart 2, and the collision is elastic. The speed of cart 1 before the collision is higher than the speed 

of cart 2 before the collision. (a) Which cart experiences the greater acceleration during the colli-

sion? (b) Which cart has the greater change in momentum due to the collision? (c) Which cart has 

the greater change in kinetic energy during the collision?

2.  Which of the following deformations are reversible and which are irreversible: (a) the deformation 

of a tennis ball against a racquet, (b) the deformation of a car fender during a traffic accident, (c) the 

deformation of a balloon as it is blown up, (d) the deformation of fresh snow as you walk through it?

3.  Translate the kinetic energy graph in Figure 7.2 into three sets of energy bars: before the collision, 

during the collision, and after the collision. In each set, include a bar for K1 , a bar for K2 , and a bar 

for the internal energy of the system, and assume that the system is closed.

4.  Describe a scenario to fit the energy bars shown in Figure 7.22. What happens during the interaction?

Figure 7.22 

K U Es Eth K U Es Eth

∆Es

∆U∆K

∆Eth

Figure 7.23 

vx

t1

2

5.  Describe a scenario to fit the velocity-versus-time curves for two colliding objects shown in 

Figure 7.23. What happens to the initial energy of the system of colliding objects during the 

interaction?

Answers
1. (a) The cart with the smaller inertia experiences the greater acceleration (see Figure 7.2). (b) The magnitude 

of ∆pS1 is the same as the magnitude of ∆pS2 , but the changes are in opposite directions because the momentum 

of the system does not change during the collision. (c) �∆K1� = �∆K2� , but the changes are opposite in sign 

because the kinetic energy of the system before the elastic collision has to be the same as the kinetic energy of 

the system afterward.

2. (a) Reversible. The ball returns to its original shape. (b) Irreversible. The fender remains crumpled. (c) Irreversible. 

The balloon does not completely return to its original shape after deflation. (d) Irreversible. Your footprints 

remain.

3. See Figure 7.24. Before the collision K1 = 0, K2 is maximal, 

and Eint = 0; during the collision K1 , K2 , and Eint are all 

about one-third of the initial value of K1; after the collision 

K1 is about 7>8 of the initial value of K1 , K2 is about 1>8 of 

the initial value of K1 , and Eint = 0. Because the system is 

closed, its energy is constant, which means the sum of the 

three bars is always the same.

4. During the interaction, eight units of source energy is con-

verted to two units of kinetic energy, two units of potential 

energy, and four units of thermal energy. One possible scenario is the vertical launching of a ball. Consider the 

system comprising you, the ball, and Earth from just before the ball is launched until after it has traveled some 

distance upward: The source energy goes down (you exert some effort), thermal energy goes up (in the process 

of exerting effort you heat up), kinetic energy goes up (the ball was at rest before the launch), and so does po-

tential energy (the distance between the ground and the ball increases).

5. The graph represents an inelastic collision because the relative velocity of the two objects decreases to about 

half its initial value. In order for the momentum of the system to remain constant, the inertia of object 1 must 

be twice that of object 2. Possible scenario: Object 2, inertia m, collides inelastically with object 1, inertia 2m. 

The collision brings object 2 to rest and sets object 1 in motion. The interaction converts the initial kinetic energy 

of object 2 to kinetic energy of cart 1 and to thermal energy and/or incoherent configuration energy of both carts.

Figure 7.24 
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6.5 Galilean relativity
Consider two observers, A and B, moving at constant velocity relative to each other. Suppose they observe the same event and describe it relative to their respective reference frames and clocks (Figure 6.13). Let the origins of the two observers’ reference frames coincide at t = 0 (Figure 6.13a). Observer A sees the event as happening at position rSAe at clock reading tAe (Figure 6.13b).* Observer B sees the event at position rSBe at clock reading tBe . What is the relationship be­tween these clock readings and positions?If, as we discussed in Chapter 1, we assume time is absolute—the same every­where—and if the two observers have synchronized their (identical) clocks, they both observe the event at the same clock readings, which means

 
tAe = tBe. (6.1)

Because the clock readings of the two observers always agree, we can omit the subscripts referring to the reference frames:

 tA = tB = t. (6.2)
From Figure 6.13 we see that the position rSAB of observer B in refer­ence frame A at instant te is equal to B’s displacement over the time interval ∆t = te − 0 = te , and so rSAB = vSAB te because B moves at constant velocity vSAB . Therefore

 rSAe = rSAB + rSBe = vSAB te + rSBe . (6.3)
Equations 6.2 and 6.3 allow us to relate event data collected in one reference frame to data on the same event e collected in a reference frame that moves at constant velocity relative to the first one (neither of these has to be at rest relative to Earth, but their origins must coincide at t = 0). To this end we rewrite these equations so that they give the values of time and position in reference frame B 

Figure 6.13 Two observers moving relative to each other observe the same event. Observer B moves at constant velocity vSAB 
relative to observer A. (a) The origins O of the two reference frames overlap at instant t = 0. (b) At instant te , when the event 
occurs, the origin of observer B’s reference frame has a displacement vSAB te relative to reference frame A.

event

OA OB

OA  =  OB

Both observers start at origin at clock reading t  =  0.

In time interval shown, observer B advances this distance.

vAB

rBe
rAB  =  vABte

tA  =  tB  =  0

rAe

tBe  =  tAe  =  te

tAe

(a)

A

A
B

B

Origin in frame A Origin in frame B

S

S

S
S S

vAB
S

(b)

*Remember our subscript form: The capital letter refers to the reference frame; the lowercase e is for 
“event.” Thus the vector rSAe represents observer A’s measurement of the position at which the event 
occurs.
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6.5 Galilean relativity
Consider two observers, A and B, moving at constant velocity relative to each other. Suppose they observe the same event and describe it relative to their respective reference frames and clocks (Figure 6.13). Let the origins of the two observers’ reference frames coincide at t = 0 (Figure 6.13a). Observer A sees the event as happening at position rSAe at clock reading tAe (Figure 6.13b).* Observer B sees the event at position rSBe at clock reading tBe . What is the relationship be­tween these clock readings and positions?If, as we discussed in Chapter 1, we assume time is absolute—the same every­where—and if the two observers have synchronized their (identical) clocks, they both observe the event at the same clock readings, which means

 
tAe = tBe. (6.1)

Because the clock readings of the two observers always agree, we can omit the subscripts referring to the reference frames:

 tA = tB = t. (6.2)
From Figure 6.13 we see that the position rSAB of observer B in refer­ence frame A at instant te is equal to B’s displacement over the time interval ∆t = te − 0 = te , and so rSAB = vSAB te because B moves at constant velocity vSAB . Therefore

 rSAe = rSAB + rSBe = vSAB te + rSBe . (6.3)
Equations 6.2 and 6.3 allow us to relate event data collected in one reference frame to data on the same event e collected in a reference frame that moves at constant velocity relative to the first one (neither of these has to be at rest relative to Earth, but their origins must coincide at t = 0). To this end we rewrite these equations so that they give the values of time and position in reference frame B 

Figure 6.13 Two observers moving relative to each other observe the same event. Observer B moves at constant velocity vSAB 
relative to observer A. (a) The origins O of the two reference frames overlap at instant t = 0. (b) At instant te , when the event 
occurs, the origin of observer B’s reference frame has a displacement vSAB te relative to reference frame A.

event

OA OB

OA  =  OB

Both observers start at origin at clock reading t  =  0.

In time interval shown, observer B advances this distance.

vAB

rBe
rAB  =  vABte

tA  =  tB  =  0

rAe

tBe  =  tAe  =  te

tAe

(a)

A

A
B

B

Origin in frame A Origin in frame B

S

S

S
S S

vAB
S

(b)

*Remember our subscript form: The capital letter refers to the reference frame; the lowercase e is for 
“event.” Thus the vector rSAe represents observer A’s measurement of the position at which the event 
occurs.
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6.5 Galilean relativity
Consider two observers, A and B, moving at constant velocity relative to each 
other. Suppose they observe the same event and describe it relative to their 
respective reference frames and clocks (Figure 6.13). Let the origins of the two 
observers’ reference frames coincide at t = 0 (Figure 6.13a). Observer A sees the 
event as happening at position rSAe at clock reading tAe (Figure 6.13b).* Observer B 
sees the event at position rSBe at clock reading tBe . What is the relationship be­
tween these clock readings and positions?

If, as we discussed in Chapter 1, we assume time is absolute—the same every­
where—and if the two observers have synchronized their (identical) clocks, they 
both observe the event at the same clock readings, which means

 tAe = tBe. (6.1)

Because the clock readings of the two observers always agree, we can omit the 
subscripts referring to the reference frames:

 tA = tB = t. (6.2)

From Figure 6.13 we see that the position rSAB of observer B in refer­
ence frame A at instant te is equal to B’s displacement over the time interval 
∆t = te − 0 = te , and so rSAB = vSAB te because B moves at constant velocity 
vSAB . Therefore

 rSAe = rSAB + rSBe = vSAB te + rSBe . (6.3)

Equations 6.2 and 6.3 allow us to relate event data collected in one reference 
frame to data on the same event e collected in a reference frame that moves at 
constant velocity relative to the first one (neither of these has to be at rest relative 
to Earth, but their origins must coincide at t = 0). To this end we rewrite these 
equations so that they give the values of time and position in reference frame B 

Figure 6.13 Two observers moving relative to each other observe the same event. Observer B moves at constant velocity vSAB 
relative to observer A. (a) The origins O of the two reference frames overlap at instant t = 0. (b) At instant te , when the event 
occurs, the origin of observer B’s reference frame has a displacement vSAB te relative to reference frame A.

event

OA OBOA  =  OB

Both observers start at origin 
at clock reading t  =  0.

In time interval shown, observer B 
advances this distance.

vAB

rBerAB  =  vABte

tA  =  tB  =  0

rAe

tBe  =  tAe  =  tetAe
(a)

A AB B

Origin in frame A Origin in frame B

S

S

SS S

vAB
S

(b)

*Remember our subscript form: The capital letter refers to the reference frame; the lowercase e is for 
“event.” Thus the vector rSAe represents observer A’s measurement of the position at which the event 
occurs.
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6.5 Galilean relativity
Consider two observers, A and B, moving at constant velocity relative to each 
other. Suppose they observe the same event and describe it relative to their 
respective reference frames and clocks (Figure 6.13). Let the origins of the two 
observers’ reference frames coincide at t = 0 (Figure 6.13a). Observer A sees the 
event as happening at position rSAe at clock reading tAe (Figure 6.13b).* Observer B 
sees the event at position rSBe at clock reading tBe . What is the relationship be­
tween these clock readings and positions?

If, as we discussed in Chapter 1, we assume time is absolute—the same every­
where—and if the two observers have synchronized their (identical) clocks, they 
both observe the event at the same clock readings, which means

 tAe = tBe. (6.1)

Because the clock readings of the two observers always agree, we can omit the 
subscripts referring to the reference frames:

 tA = tB = t. (6.2)

From Figure 6.13 we see that the position rSAB of observer B in refer­
ence frame A at instant te is equal to B’s displacement over the time interval 
∆t = te − 0 = te , and so rSAB = vSAB te because B moves at constant velocity 
vSAB . Therefore

 rSAe = rSAB + rSBe = vSAB te + rSBe . (6.3)

Equations 6.2 and 6.3 allow us to relate event data collected in one reference 
frame to data on the same event e collected in a reference frame that moves at 
constant velocity relative to the first one (neither of these has to be at rest relative 
to Earth, but their origins must coincide at t = 0). To this end we rewrite these 
equations so that they give the values of time and position in reference frame B 

Figure 6.13 Two observers moving relative to each other observe the same event. Observer B moves at constant velocity vSAB 
relative to observer A. (a) The origins O of the two reference frames overlap at instant t = 0. (b) At instant te , when the event 
occurs, the origin of observer B’s reference frame has a displacement vSAB te relative to reference frame A.
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*Remember our subscript form: The capital letter refers to the reference frame; the lowercase e is for 
“event.” Thus the vector rSAe represents observer A’s measurement of the position at which the event 
occurs.
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192 Chapter 11  praCtiCe  Motion in a CirCle

  1. The speed v of a point on the equator as Earth rotates (D, P)

  2. The rotational inertia of a bowling ball about an axis tangent to 

its surface (A, R, X)

  3. Your rotational inertia as you turn over in your sleep (V, C)

  4. The angular momentum around the axle of a wheel/tire combi-

nation on your car as you cruise on the freeway (E, I, O, AA, S)

  5. The angular momentum of a spinning ice skater with each arm 

held out to the side and parallel to the ice (G, X, N, U)

  6. The speed you would need to orbit Earth in a low orbit (F, P)

  7. The magnitude of the force exerted by the Sun on Earth to hold 

Earth in orbit (B, L, T, Z)

  8. The kinetic energy associated with Earth’s rotation (Z, P, D)

  9. The angular momentum, about a vertical axis through your 

house, of a large car driving down your street (H, Y, M)

10. The kinetic energy of a spinning yo-yo (K, W, J, Q)

Developing a Feel

Make an order-of-magnitude estimate of each of the following quantities. Letters in parentheses refer to 

hints below. Use them as needed to guide your thinking:

A. What is the inertia of a bowling ball?

B. How long a time interval is needed for Earth to make one revolu-

tion around the Sun?

C. What simple geometric shape is an appropriate model for a 

sleeping person?

D. What is Earth’s rotational speed?

E. What is the combined inertia of the wheel and tire?

F. What is the relationship between force and acceleration for this 

orbit?
G. How can you model the skater’s shape during her spin?

H. What is the inertia of a midsize car?

I. What is the radius of the tire?

J. How many turns are needed to rewind the yo-yo?

K. What is the yo-yo’s rotational inertia?

L. What is the radius of Earth’s orbit?

M. What is the perpendicular distance from the house to the car’s 

line of motion?

N. What is the skater’s rotational inertia with arms held out?

O. How can you model the combined rotational inertia of the wheel 

and tire?
P. What is Earth’s radius?

Q. What is the final rotational speed?

R. What is the radius of a bowling ball?

S. What is the rotational speed of the tire?

T. What is the required centripetal acceleration?

Hints

If needed, see Key for answers to these guiding questions.

U. What is the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to 

reach the end of the string?

X. What is needed in addition to the formulas in Principles  

Table 11.3 in order to determine this quantity?

Y. What is a typical speed for a car moving on a city street?

Z. What is Earth’s inertia?

AA. What is a typical freeway cruising speed?

Key (all values approximate)

A. 7 kg;  B. 1 y = 3 × 107 s;  C. solid cylinder of radius 0.2 m;  

D. period = 24 h, so v = 7 × 10-5 s-1;  E. 101 kg;  F. from  

Eqs. 8.6, 8.17, and 11.16, gF
S
= maS,  so mg = mv2>r;  G. a solid  

cylinder with two thin-rod arms of inertia 4 kg held out perpen-

dicularly;  H. 2 × 103 kg;  I. 0.3 m;  J. 2 × 101 turns;   

K. 6 × 10−5 kg # m2 (with yo-yo modeled as solid  cylinder);   

L. 2 × 1011 m;  M. 2 × 101 m;  N. 4 kg # m2;  O. between MR2  

(cylindrical shell representing tire) and MR2>2 (solid cylinder  

representing wheel)—say, 3MR2>4;  P. 6 × 106 m;  Q. about twice 

the average rotational speed, or v = 5 × 102 s-1;  R. 0.1 m;   

S. no slipping, so v = v>r ≈ 102 s-1;  T. 8 × 10−3 m>s2;   

U. v ≈ 10 s-1;  V. 7 × 101 kg;  W. 0.5 s;  X. the parallel-axis  

theorem;  Y. 3 × 101 mi>h;  Z. 6 × 1024 kg;  AA. 3 × 101 m>s
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S. no slipping, so v = v>r ≈ 102 s-1;  T. 8 × 10−3 m>s2;   

U. v ≈ 10 s-1;  V. 7 × 101 kg;  W. 0.5 s;  X. the parallel-axis  

theorem;  Y. 3 × 101 mi>h;  Z. 6 × 1024 kg;  AA. 3 × 101 m>s
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192 Chapter 11  praCtiCe  Motion in a CirCle

  1. The speed v of a point on the equator as Earth rotates (D, P)

  2. The rotational inertia of a bowling ball about an axis tangent to 

its surface (A, R, X)

  3. Your rotational inertia as you turn over in your sleep (V, C)

  4. The angular momentum around the axle of a wheel/tire combi-

nation on your car as you cruise on the freeway (E, I, O, AA, S)

  5. The angular momentum of a spinning ice skater with each arm 

held out to the side and parallel to the ice (G, X, N, U)

  6. The speed you would need to orbit Earth in a low orbit (F, P)

  7. The magnitude of the force exerted by the Sun on Earth to hold 

Earth in orbit (B, L, T, Z)

  8. The kinetic energy associated with Earth’s rotation (Z, P, D)

  9. The angular momentum, about a vertical axis through your 

house, of a large car driving down your street (H, Y, M)

10. The kinetic energy of a spinning yo-yo (K, W, J, Q)

Developing a Feel

Make an order-of-magnitude estimate of each of the following quantities. Letters in parentheses refer to 

hints below. Use them as needed to guide your thinking:

A. What is the inertia of a bowling ball?

B. How long a time interval is needed for Earth to make one revolu-

tion around the Sun?

C. What simple geometric shape is an appropriate model for a 

sleeping person?

D. What is Earth’s rotational speed?

E. What is the combined inertia of the wheel and tire?

F. What is the relationship between force and acceleration for this 

orbit?
G. How can you model the skater’s shape during her spin?

H. What is the inertia of a midsize car?

I. What is the radius of the tire?

J. How many turns are needed to rewind the yo-yo?

K. What is the yo-yo’s rotational inertia?

L. What is the radius of Earth’s orbit?

M. What is the perpendicular distance from the house to the car’s 

line of motion?

N. What is the skater’s rotational inertia with arms held out?

O. How can you model the combined rotational inertia of the wheel 

and tire?
P. What is Earth’s radius?

Q. What is the final rotational speed?

R. What is the radius of a bowling ball?

S. What is the rotational speed of the tire?

T. What is the required centripetal acceleration?

Hints

If needed, see Key for answers to these guiding questions.

U. What is the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to 

reach the end of the string?

X. What is needed in addition to the formulas in Principles  

Table 11.3 in order to determine this quantity?

Y. What is a typical speed for a car moving on a city street?

Z. What is Earth’s inertia?

AA. What is a typical freeway cruising speed?

Key (all values approximate)

A. 7 kg;  B. 1 y = 3 × 107 s;  C. solid cylinder of radius 0.2 m;  

D. period = 24 h, so v = 7 × 10-5 s-1;  E. 101 kg;  F. from  

Eqs. 8.6, 8.17, and 11.16, gF
S
= maS,  so mg = mv2>r;  G. a solid  

cylinder with two thin-rod arms of inertia 4 kg held out perpen-

dicularly;  H. 2 × 103 kg;  I. 0.3 m;  J. 2 × 101 turns;   

K. 6 × 10−5 kg # m2 (with yo-yo modeled as solid  cylinder);   

L. 2 × 1011 m;  M. 2 × 101 m;  N. 4 kg # m2;  O. between MR2  

(cylindrical shell representing tire) and MR2>2 (solid cylinder  

representing wheel)—say, 3MR2>4;  P. 6 × 106 m;  Q. about twice 

the average rotational speed, or v = 5 × 102 s-1;  R. 0.1 m;   

S. no slipping, so v = v>r ≈ 102 s-1;  T. 8 × 10−3 m>s2;   

U. v ≈ 10 s-1;  V. 7 × 101 kg;  W. 0.5 s;  X. the parallel-axis  

theorem;  Y. 3 × 101 mi>h;  Z. 6 × 1024 kg;  AA. 3 × 101 m>s

M11_MAZU0930_PRAC_Ch11_p189-208.indd   192

19/09/13   4:44 PM



PrinciPles  &  Pract ice  of

P h ys i c s

e r i c  M a z u r

Pr inc iPles  &  Practice  ofP h ys i c s

e r i c  M a z u r

p
r

a
c

t
ic

e

17
chapter Summary   304

review Questions   305

Developing a Feel   306

Worked and Guided problems   307

Questions and problems   311

answers to review Questions   316

answers to Guided problems   316

practice

Waves in two and 
three Dimensions

M17_MAZU0930_PRAC_ch17_p303-316.indd   303 14/10/13   4:30 PM

p
r

a
c

t
ic

e

192 Chapter 11  praCtiCe  Motion in a CirCle

  1. The speed v of a point on the equator as Earth rotates (D, P)
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its surface (A, R, X)

  3. Your rotational inertia as you turn over in your sleep (V, C)

  4. The angular momentum around the axle of a wheel/tire combi-

nation on your car as you cruise on the freeway (E, I, O, AA, S)

  5. The angular momentum of a spinning ice skater with each arm 

held out to the side and parallel to the ice (G, X, N, U)

  6. The speed you would need to orbit Earth in a low orbit (F, P)

  7. The magnitude of the force exerted by the Sun on Earth to hold 

Earth in orbit (B, L, T, Z)

  8. The kinetic energy associated with Earth’s rotation (Z, P, D)

  9. The angular momentum, about a vertical axis through your 

house, of a large car driving down your street (H, Y, M)

10. The kinetic energy of a spinning yo-yo (K, W, J, Q)

Developing a Feel

Make an order-of-magnitude estimate of each of the following quantities. Letters in parentheses refer to 

hints below. Use them as needed to guide your thinking:

A. What is the inertia of a bowling ball?

B. How long a time interval is needed for Earth to make one revolu-

tion around the Sun?

C. What simple geometric shape is an appropriate model for a 

sleeping person?

D. What is Earth’s rotational speed?

E. What is the combined inertia of the wheel and tire?

F. What is the relationship between force and acceleration for this 

orbit?
G. How can you model the skater’s shape during her spin?

H. What is the inertia of a midsize car?

I. What is the radius of the tire?

J. How many turns are needed to rewind the yo-yo?

K. What is the yo-yo’s rotational inertia?

L. What is the radius of Earth’s orbit?

M. What is the perpendicular distance from the house to the car’s 

line of motion?

N. What is the skater’s rotational inertia with arms held out?

O. How can you model the combined rotational inertia of the wheel 

and tire?
P. What is Earth’s radius?

Q. What is the final rotational speed?

R. What is the radius of a bowling ball?

S. What is the rotational speed of the tire?

T. What is the required centripetal acceleration?

Hints

If needed, see Key for answers to these guiding questions.

U. What is the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to 

reach the end of the string?

X. What is needed in addition to the formulas in Principles  

Table 11.3 in order to determine this quantity?

Y. What is a typical speed for a car moving on a city street?

Z. What is Earth’s inertia?

AA. What is a typical freeway cruising speed?

Key (all values approximate)

A. 7 kg;  B. 1 y = 3 × 107 s;  C. solid cylinder of radius 0.2 m;  

D. period = 24 h, so v = 7 × 10-5 s-1;  E. 101 kg;  F. from  

Eqs. 8.6, 8.17, and 11.16, gF
S
= maS,  so mg = mv2>r;  G. a solid  

cylinder with two thin-rod arms of inertia 4 kg held out perpen-

dicularly;  H. 2 × 103 kg;  I. 0.3 m;  J. 2 × 101 turns;   

K. 6 × 10−5 kg # m2 (with yo-yo modeled as solid  cylinder);   

L. 2 × 1011 m;  M. 2 × 101 m;  N. 4 kg # m2;  O. between MR2  

(cylindrical shell representing tire) and MR2>2 (solid cylinder  

representing wheel)—say, 3MR2>4;  P. 6 × 106 m;  Q. about twice 

the average rotational speed, or v = 5 × 102 s-1;  R. 0.1 m;   

S. no slipping, so v = v>r ≈ 102 s-1;  T. 8 × 10−3 m>s2;   

U. v ≈ 10 s-1;  V. 7 × 101 kg;  W. 0.5 s;  X. the parallel-axis  

theorem;  Y. 3 × 101 mi>h;  Z. 6 × 1024 kg;  AA. 3 × 101 m>s
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  2. The rotational inertia of a bowling ball about an axis tangent to 

its surface (A, R, X)

  3. Your rotational inertia as you turn over in your sleep (V, C)

  4. The angular momentum around the axle of a wheel/tire combi-

nation on your car as you cruise on the freeway (E, I, O, AA, S)

  5. The angular momentum of a spinning ice skater with each arm 

held out to the side and parallel to the ice (G, X, N, U)

  6. The speed you would need to orbit Earth in a low orbit (F, P)

  7. The magnitude of the force exerted by the Sun on Earth to hold 

Earth in orbit (B, L, T, Z)

  8. The kinetic energy associated with Earth’s rotation (Z, P, D)

  9. The angular momentum, about a vertical axis through your 

house, of a large car driving down your street (H, Y, M)

10. The kinetic energy of a spinning yo-yo (K, W, J, Q)

Developing a Feel

Make an order-of-magnitude estimate of each of the following quantities. Letters in parentheses refer to 

hints below. Use them as needed to guide your thinking:

A. What is the inertia of a bowling ball?

B. How long a time interval is needed for Earth to make one revolu-

tion around the Sun?

C. What simple geometric shape is an appropriate model for a 

sleeping person?

D. What is Earth’s rotational speed?

E. What is the combined inertia of the wheel and tire?

F. What is the relationship between force and acceleration for this 

orbit?
G. How can you model the skater’s shape during her spin?

H. What is the inertia of a midsize car?

I. What is the radius of the tire?

J. How many turns are needed to rewind the yo-yo?

K. What is the yo-yo’s rotational inertia?

L. What is the radius of Earth’s orbit?

M. What is the perpendicular distance from the house to the car’s 

line of motion?

N. What is the skater’s rotational inertia with arms held out?

O. How can you model the combined rotational inertia of the wheel 

and tire?
P. What is Earth’s radius?

Q. What is the final rotational speed?

R. What is the radius of a bowling ball?

S. What is the rotational speed of the tire?

T. What is the required centripetal acceleration?

Hints

If needed, see Key for answers to these guiding questions.

U. What is the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to 

reach the end of the string?

X. What is needed in addition to the formulas in Principles  

Table 11.3 in order to determine this quantity?

Y. What is a typical speed for a car moving on a city street?

Z. What is Earth’s inertia?

AA. What is a typical freeway cruising speed?

Key (all values approximate)

A. 7 kg;  B. 1 y = 3 × 107 s;  C. solid cylinder of radius 0.2 m;  

D. period = 24 h, so v = 7 × 10-5 s-1;  E. 101 kg;  F. from  

Eqs. 8.6, 8.17, and 11.16, gF
S
= maS,  so mg = mv2>r;  G. a solid  

cylinder with two thin-rod arms of inertia 4 kg held out perpen-

dicularly;  H. 2 × 103 kg;  I. 0.3 m;  J. 2 × 101 turns;   

K. 6 × 10−5 kg # m2 (with yo-yo modeled as solid  cylinder);   

L. 2 × 1011 m;  M. 2 × 101 m;  N. 4 kg # m2;  O. between MR2  

(cylindrical shell representing tire) and MR2>2 (solid cylinder  

representing wheel)—say, 3MR2>4;  P. 6 × 106 m;  Q. about twice 

the average rotational speed, or v = 5 × 102 s-1;  R. 0.1 m;   

S. no slipping, so v = v>r ≈ 102 s-1;  T. 8 × 10−3 m>s2;   

U. v ≈ 10 s-1;  V. 7 × 101 kg;  W. 0.5 s;  X. the parallel-axis  

theorem;  Y. 3 × 101 mi>h;  Z. 6 × 1024 kg;  AA. 3 × 101 m>s
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238 Chapter 13  praCtiCe  Gravity

❸ execute plan Let us use ri for the initial Mars-probe radial center-to-center separation distance, rf = ∞  for the final separa-tion distance, RM for the radius of Mars, and mM and mp for the two masses. We begin with Eq. 13.23:

 Emech = 1
2 mpv2

esc − G 
mMmp

RM
= 0

 12 v2
esc − G 

mM

RM
= 0

 12 v2
esc = G 

mM

RM

 vesc = A2G 
mM

RM

 vesc =B2(6.67 × 10-11 N # m2>kg2) 
6.42 × 1023 kg
3.40 × 106 m  = 5.02 × 103 m>s = 5 km>s. ✔

Notice that this speed does not depend on the mass of the probe. A probe of any other size shot from the cannon would need the same minimum speed to break free of Mars’s gravitational pull.❹ evaluate result Our algebraic expression for the escape speed is plausible because it involves the mass of Mars, the ini-tial center-to-center radial separation distance of our two objects (which is Mars’s radius), and G. We expect vesc to increase with mM because the gravitational pull increases with increasing mass. We also expect vesc to decrease as the distance between the launch position and Mars’s center increases because the gravitational force exerted by the planet on the probe decreases with increasing separa-tion distance. All this is just what our result predicts.An escape speed of 18,000 km/h is smaller than (but on the order of) the escape speed from Earth, and so the answer is not unreasonable.We assumed that the initial Mars-probe separation distance is equal to the planet’s radius. Of course, the length of the cannon may be tens of meters, but this tiny difference would have no impact on the numerical answer. We ignored the rotation of Mars, which could supply a small amount of the needed kinetic energy. We also ignored the effect of the Sun, which is fine for getting away from the surface of Mars, but we would need to account for it if the destina-tion was another star.
Guided problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided to use a compressed spring to launch a spacecraft. If the spring constant is 100,000 N/m and the mass of the spacecraft is 10,000 kg, how far must the spring be compressed in order to launch the craft to a position outside Earth’s gravitational influence?
❶ GettinG started
  1. Describe the problem in your own words. Are there similarities to Worked Problem 13.3?  2. Draw a diagram showing the initial and final states. What is the spacecraft’s situation in the final state?  3. How does the spacecraft gain the necessary escape speed?

❷ devise plan
  4. What law of physics should you invoke?

  5. As the spring is compressed, is the gravitational potential energy of the Earth-spacecraft system affected? If so, can you ignore this effect?  6. What equation allows you to relate the initial and final states?❸ execute plan
  7. What is your target unknown quantity? Algebraically isolate it on one side of your equation.  8. Substitute the numerical values you know to get a numerical answer.

❹ evaluate result
  9. Is your algebraic expression for the compression plausible for how the compression changes as the spring constant and Earth’s mass and radius change?10. If you were the head of a design team, would you recommend pursuing this launch method?

Figure WG13.3 

❷ devise plan We can use conservation of energy because the probe has all of the needed kinetic energy at the beginning, as it is shot from a cannon. As the probe travels, this kinetic energy is con-verted to gravitational potential energy of the Mars-probe system. We want to know the initial speed of the probe acquired at launch. The initial potential energy is the value when the probe is still near the Martian surface. The final state of the probe is zero speed at an infinite distance from Mars. The Principles volume analyzes a simi-lar situation in Section 13.7, leading to Eq. 13.23, so there is no need to derive this result again here. We begin with Eq. 13.23, solving this version of an energy conservation equation for vi = vesc in terms of the known quantities.

Worked problem 13.3 escape at last
The Mars Colony wants to launch a deep-space probe, but they have no rocket engines. They decide to launch a probe with an electro-magnetic cannon, which means they must launch at escape speed. Determine this speed.

❶ GettinG started Let us do a quick sketch to help our think-ing (Figure WG13.3). We select the Mars-probe system for analysis. In order to reach “deep space,” the probe must attain a very great distance from Mars. This will require a significant amount of initial kinetic energy, which the probe must acquire during launch. After launch, the kinetic energy immediately begins to decrease, and the potential energy of the Mars-probe system increases as the separa-tion distance increases. We assume a reference frame where Mars is fixed and only the probe moves. When the probe is far enough away (infinity, really, but practically it doesn’t need to go quite this far), the kinetic energy has its minimum value, which we can take to be zero because the colonists presumably do not want to supply any more energy than needed to get the probe out there. The gravi-tational potential energy has its maximum value, which is also zero. (Remember that universal gravitational potential energy is nega-tive.) We also assume that the Sun and other planets have a negli-gible influence on our system, and we ignore the rotation of Mars.
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238 Chapter 13  praCtiCe  Gravity

❸ execute plan Let us use ri for the initial Mars-probe radial center-to-center separation distance, rf = ∞  for the final separa-tion distance, RM for the radius of Mars, and mM and mp for the two masses. We begin with Eq. 13.23:

 Emech = 1
2 mpv2

esc − G 
mMmp

RM
= 0

 12 v2
esc − G 

mM

RM
= 0

 12 v2
esc = G 

mM

RM

 vesc = A2G 
mM

RM

 vesc =B2(6.67 × 10-11 N # m2>kg2) 
6.42 × 1023 kg
3.40 × 106 m  = 5.02 × 103 m>s = 5 km>s. ✔

Notice that this speed does not depend on the mass of the probe. A probe of any other size shot from the cannon would need the same minimum speed to break free of Mars’s gravitational pull.❹ evaluate result Our algebraic expression for the escape speed is plausible because it involves the mass of Mars, the ini-tial center-to-center radial separation distance of our two objects (which is Mars’s radius), and G. We expect vesc to increase with mM because the gravitational pull increases with increasing mass. We also expect vesc to decrease as the distance between the launch position and Mars’s center increases because the gravitational force exerted by the planet on the probe decreases with increasing separa-tion distance. All this is just what our result predicts.An escape speed of 18,000 km/h is smaller than (but on the order of) the escape speed from Earth, and so the answer is not unreasonable.We assumed that the initial Mars-probe separation distance is equal to the planet’s radius. Of course, the length of the cannon may be tens of meters, but this tiny difference would have no impact on the numerical answer. We ignored the rotation of Mars, which could supply a small amount of the needed kinetic energy. We also ignored the effect of the Sun, which is fine for getting away from the surface of Mars, but we would need to account for it if the destina-tion was another star.
Guided problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided to use a compressed spring to launch a spacecraft. If the spring constant is 100,000 N/m and the mass of the spacecraft is 10,000 kg, how far must the spring be compressed in order to launch the craft to a position outside Earth’s gravitational influence?
❶ GettinG started
  1. Describe the problem in your own words. Are there similarities to Worked Problem 13.3?  2. Draw a diagram showing the initial and final states. What is the spacecraft’s situation in the final state?  3. How does the spacecraft gain the necessary escape speed?

❷ devise plan
  4. What law of physics should you invoke?

  5. As the spring is compressed, is the gravitational potential energy of the Earth-spacecraft system affected? If so, can you ignore this effect?  6. What equation allows you to relate the initial and final states?❸ execute plan
  7. What is your target unknown quantity? Algebraically isolate it on one side of your equation.  8. Substitute the numerical values you know to get a numerical answer.

❹ evaluate result
  9. Is your algebraic expression for the compression plausible for how the compression changes as the spring constant and Earth’s mass and radius change?10. If you were the head of a design team, would you recommend pursuing this launch method?

Figure WG13.3 

❷ devise plan We can use conservation of energy because the probe has all of the needed kinetic energy at the beginning, as it is shot from a cannon. As the probe travels, this kinetic energy is con-verted to gravitational potential energy of the Mars-probe system. We want to know the initial speed of the probe acquired at launch. The initial potential energy is the value when the probe is still near the Martian surface. The final state of the probe is zero speed at an infinite distance from Mars. The Principles volume analyzes a simi-lar situation in Section 13.7, leading to Eq. 13.23, so there is no need to derive this result again here. We begin with Eq. 13.23, solving this version of an energy conservation equation for vi = vesc in terms of the known quantities.

Worked problem 13.3 escape at last
The Mars Colony wants to launch a deep-space probe, but they have no rocket engines. They decide to launch a probe with an electro-magnetic cannon, which means they must launch at escape speed. Determine this speed.

❶ GettinG started Let us do a quick sketch to help our think-ing (Figure WG13.3). We select the Mars-probe system for analysis. In order to reach “deep space,” the probe must attain a very great distance from Mars. This will require a significant amount of initial kinetic energy, which the probe must acquire during launch. After launch, the kinetic energy immediately begins to decrease, and the potential energy of the Mars-probe system increases as the separa-tion distance increases. We assume a reference frame where Mars is fixed and only the probe moves. When the probe is far enough away (infinity, really, but practically it doesn’t need to go quite this far), the kinetic energy has its minimum value, which we can take to be zero because the colonists presumably do not want to supply any more energy than needed to get the probe out there. The gravi-tational potential energy has its maximum value, which is also zero. (Remember that universal gravitational potential energy is nega-tive.) We also assume that the Sun and other planets have a negli-gible influence on our system, and we ignore the rotation of Mars.
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❸ execute plan Let us use ri for the initial Mars-probe radial center-to-center separation distance, rf = ∞  for the final separa-tion distance, RM for the radius of Mars, and mM and mp for the two masses. We begin with Eq. 13.23:

 Emech = 1
2 mpv2
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= 0
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mM
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 vesc = A2G 
mM

RM

 vesc =B2(6.67 × 10-11 N # m2>kg2) 
6.42 × 1023 kg
3.40 × 106 m  = 5.02 × 103 m>s = 5 km>s. ✔

Notice that this speed does not depend on the mass of the probe. A probe of any other size shot from the cannon would need the same minimum speed to break free of Mars’s gravitational pull.❹ evaluate result Our algebraic expression for the escape speed is plausible because it involves the mass of Mars, the ini-tial center-to-center radial separation distance of our two objects (which is Mars’s radius), and G. We expect vesc to increase with mM because the gravitational pull increases with increasing mass. We also expect vesc to decrease as the distance between the launch position and Mars’s center increases because the gravitational force exerted by the planet on the probe decreases with increasing separa-tion distance. All this is just what our result predicts.An escape speed of 18,000 km/h is smaller than (but on the order of) the escape speed from Earth, and so the answer is not unreasonable.We assumed that the initial Mars-probe separation distance is equal to the planet’s radius. Of course, the length of the cannon may be tens of meters, but this tiny difference would have no impact on the numerical answer. We ignored the rotation of Mars, which could supply a small amount of the needed kinetic energy. We also ignored the effect of the Sun, which is fine for getting away from the surface of Mars, but we would need to account for it if the destina-tion was another star.
Guided problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided to use a compressed spring to launch a spacecraft. If the spring constant is 100,000 N/m and the mass of the spacecraft is 10,000 kg, how far must the spring be compressed in order to launch the craft to a position outside Earth’s gravitational influence?
❶ GettinG started
  1. Describe the problem in your own words. Are there similarities to Worked Problem 13.3?  2. Draw a diagram showing the initial and final states. What is the spacecraft’s situation in the final state?  3. How does the spacecraft gain the necessary escape speed?

❷ devise plan
  4. What law of physics should you invoke?

  5. As the spring is compressed, is the gravitational potential energy of the Earth-spacecraft system affected? If so, can you ignore this effect?  6. What equation allows you to relate the initial and final states?❸ execute plan
  7. What is your target unknown quantity? Algebraically isolate it on one side of your equation.  8. Substitute the numerical values you know to get a numerical answer.

❹ evaluate result
  9. Is your algebraic expression for the compression plausible for how the compression changes as the spring constant and Earth’s mass and radius change?10. If you were the head of a design team, would you recommend pursuing this launch method?

Figure WG13.3 

❷ devise plan We can use conservation of energy because the probe has all of the needed kinetic energy at the beginning, as it is shot from a cannon. As the probe travels, this kinetic energy is con-verted to gravitational potential energy of the Mars-probe system. We want to know the initial speed of the probe acquired at launch. The initial potential energy is the value when the probe is still near the Martian surface. The final state of the probe is zero speed at an infinite distance from Mars. The Principles volume analyzes a simi-lar situation in Section 13.7, leading to Eq. 13.23, so there is no need to derive this result again here. We begin with Eq. 13.23, solving this version of an energy conservation equation for vi = vesc in terms of the known quantities.

Worked problem 13.3 escape at last
The Mars Colony wants to launch a deep-space probe, but they have no rocket engines. They decide to launch a probe with an electro-magnetic cannon, which means they must launch at escape speed. Determine this speed.

❶ GettinG started Let us do a quick sketch to help our think-ing (Figure WG13.3). We select the Mars-probe system for analysis. In order to reach “deep space,” the probe must attain a very great distance from Mars. This will require a significant amount of initial kinetic energy, which the probe must acquire during launch. After launch, the kinetic energy immediately begins to decrease, and the potential energy of the Mars-probe system increases as the separa-tion distance increases. We assume a reference frame where Mars is fixed and only the probe moves. When the probe is far enough away (infinity, really, but practically it doesn’t need to go quite this far), the kinetic energy has its minimum value, which we can take to be zero because the colonists presumably do not want to supply any more energy than needed to get the probe out there. The gravi-tational potential energy has its maximum value, which is also zero. (Remember that universal gravitational potential energy is nega-tive.) We also assume that the Sun and other planets have a negli-gible influence on our system, and we ignore the rotation of Mars.
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❸ execute plan Let us use ri for the initial Mars-probe radial center-to-center separation distance, rf = ∞  for the final separa-tion distance, RM for the radius of Mars, and mM and mp for the two masses. We begin with Eq. 13.23:
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 vesc =B2(6.67 × 10-11 N # m2>kg2) 
6.42 × 1023 kg
3.40 × 106 m  = 5.02 × 103 m>s = 5 km>s. ✔

Notice that this speed does not depend on the mass of the probe. A probe of any other size shot from the cannon would need the same minimum speed to break free of Mars’s gravitational pull.❹ evaluate result Our algebraic expression for the escape speed is plausible because it involves the mass of Mars, the ini-tial center-to-center radial separation distance of our two objects (which is Mars’s radius), and G. We expect vesc to increase with mM because the gravitational pull increases with increasing mass. We also expect vesc to decrease as the distance between the launch position and Mars’s center increases because the gravitational force exerted by the planet on the probe decreases with increasing separa-tion distance. All this is just what our result predicts.An escape speed of 18,000 km/h is smaller than (but on the order of) the escape speed from Earth, and so the answer is not unreasonable.We assumed that the initial Mars-probe separation distance is equal to the planet’s radius. Of course, the length of the cannon may be tens of meters, but this tiny difference would have no impact on the numerical answer. We ignored the rotation of Mars, which could supply a small amount of the needed kinetic energy. We also ignored the effect of the Sun, which is fine for getting away from the surface of Mars, but we would need to account for it if the destina-tion was another star.
Guided problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided to use a compressed spring to launch a spacecraft. If the spring constant is 100,000 N/m and the mass of the spacecraft is 10,000 kg, how far must the spring be compressed in order to launch the craft to a position outside Earth’s gravitational influence?
❶ GettinG started
  1. Describe the problem in your own words. Are there similarities to Worked Problem 13.3?  2. Draw a diagram showing the initial and final states. What is the spacecraft’s situation in the final state?  3. How does the spacecraft gain the necessary escape speed?

❷ devise plan
  4. What law of physics should you invoke?

  5. As the spring is compressed, is the gravitational potential energy of the Earth-spacecraft system affected? If so, can you ignore this effect?  6. What equation allows you to relate the initial and final states?❸ execute plan
  7. What is your target unknown quantity? Algebraically isolate it on one side of your equation.  8. Substitute the numerical values you know to get a numerical answer.

❹ evaluate result
  9. Is your algebraic expression for the compression plausible for how the compression changes as the spring constant and Earth’s mass and radius change?10. If you were the head of a design team, would you recommend pursuing this launch method?

Figure WG13.3 

❷ devise plan We can use conservation of energy because the probe has all of the needed kinetic energy at the beginning, as it is shot from a cannon. As the probe travels, this kinetic energy is con-verted to gravitational potential energy of the Mars-probe system. We want to know the initial speed of the probe acquired at launch. The initial potential energy is the value when the probe is still near the Martian surface. The final state of the probe is zero speed at an infinite distance from Mars. The Principles volume analyzes a simi-lar situation in Section 13.7, leading to Eq. 13.23, so there is no need to derive this result again here. We begin with Eq. 13.23, solving this version of an energy conservation equation for vi = vesc in terms of the known quantities.

Worked problem 13.3 escape at last
The Mars Colony wants to launch a deep-space probe, but they have no rocket engines. They decide to launch a probe with an electro-magnetic cannon, which means they must launch at escape speed. Determine this speed.

❶ GettinG started Let us do a quick sketch to help our think-ing (Figure WG13.3). We select the Mars-probe system for analysis. In order to reach “deep space,” the probe must attain a very great distance from Mars. This will require a significant amount of initial kinetic energy, which the probe must acquire during launch. After launch, the kinetic energy immediately begins to decrease, and the potential energy of the Mars-probe system increases as the separa-tion distance increases. We assume a reference frame where Mars is fixed and only the probe moves. When the probe is far enough away (infinity, really, but practically it doesn’t need to go quite this far), the kinetic energy has its minimum value, which we can take to be zero because the colonists presumably do not want to supply any more energy than needed to get the probe out there. The gravi-tational potential energy has its maximum value, which is also zero. (Remember that universal gravitational potential energy is nega-tive.) We also assume that the Sun and other planets have a negli-gible influence on our system, and we ignore the rotation of Mars.
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❸ execute plan Let us use ri for the initial Mars-probe radial center-to-center separation distance, rf = ∞  for the final separa-tion distance, RM for the radius of Mars, and mM and mp for the two masses. We begin with Eq. 13.23:
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 vesc =B2(6.67 × 10-11 N # m2>kg2) 
6.42 × 1023 kg
3.40 × 106 m  = 5.02 × 103 m>s = 5 km>s. ✔

Notice that this speed does not depend on the mass of the probe. A probe of any other size shot from the cannon would need the same minimum speed to break free of Mars’s gravitational pull.❹ evaluate result Our algebraic expression for the escape speed is plausible because it involves the mass of Mars, the ini-tial center-to-center radial separation distance of our two objects (which is Mars’s radius), and G. We expect vesc to increase with mM because the gravitational pull increases with increasing mass. We also expect vesc to decrease as the distance between the launch position and Mars’s center increases because the gravitational force exerted by the planet on the probe decreases with increasing separa-tion distance. All this is just what our result predicts.An escape speed of 18,000 km/h is smaller than (but on the order of) the escape speed from Earth, and so the answer is not unreasonable.We assumed that the initial Mars-probe separation distance is equal to the planet’s radius. Of course, the length of the cannon may be tens of meters, but this tiny difference would have no impact on the numerical answer. We ignored the rotation of Mars, which could supply a small amount of the needed kinetic energy. We also ignored the effect of the Sun, which is fine for getting away from the surface of Mars, but we would need to account for it if the destina-tion was another star.
Guided problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided to use a compressed spring to launch a spacecraft. If the spring constant is 100,000 N/m and the mass of the spacecraft is 10,000 kg, how far must the spring be compressed in order to launch the craft to a position outside Earth’s gravitational influence?
❶ GettinG started
  1. Describe the problem in your own words. Are there similarities to Worked Problem 13.3?  2. Draw a diagram showing the initial and final states. What is the spacecraft’s situation in the final state?  3. How does the spacecraft gain the necessary escape speed?

❷ devise plan
  4. What law of physics should you invoke?

  5. As the spring is compressed, is the gravitational potential energy of the Earth-spacecraft system affected? If so, can you ignore this effect?  6. What equation allows you to relate the initial and final states?❸ execute plan
  7. What is your target unknown quantity? Algebraically isolate it on one side of your equation.  8. Substitute the numerical values you know to get a numerical answer.

❹ evaluate result
  9. Is your algebraic expression for the compression plausible for how the compression changes as the spring constant and Earth’s mass and radius change?10. If you were the head of a design team, would you recommend pursuing this launch method?

Figure WG13.3 

❷ devise plan We can use conservation of energy because the probe has all of the needed kinetic energy at the beginning, as it is shot from a cannon. As the probe travels, this kinetic energy is con-verted to gravitational potential energy of the Mars-probe system. We want to know the initial speed of the probe acquired at launch. The initial potential energy is the value when the probe is still near the Martian surface. The final state of the probe is zero speed at an infinite distance from Mars. The Principles volume analyzes a simi-lar situation in Section 13.7, leading to Eq. 13.23, so there is no need to derive this result again here. We begin with Eq. 13.23, solving this version of an energy conservation equation for vi = vesc in terms of the known quantities.

Worked problem 13.3 escape at last
The Mars Colony wants to launch a deep-space probe, but they have no rocket engines. They decide to launch a probe with an electro-magnetic cannon, which means they must launch at escape speed. Determine this speed.

❶ GettinG started Let us do a quick sketch to help our think-ing (Figure WG13.3). We select the Mars-probe system for analysis. In order to reach “deep space,” the probe must attain a very great distance from Mars. This will require a significant amount of initial kinetic energy, which the probe must acquire during launch. After launch, the kinetic energy immediately begins to decrease, and the potential energy of the Mars-probe system increases as the separa-tion distance increases. We assume a reference frame where Mars is fixed and only the probe moves. When the probe is far enough away (infinity, really, but practically it doesn’t need to go quite this far), the kinetic energy has its minimum value, which we can take to be zero because the colonists presumably do not want to supply any more energy than needed to get the probe out there. The gravi-tational potential energy has its maximum value, which is also zero. (Remember that universal gravitational potential energy is nega-tive.) We also assume that the Sun and other planets have a negli-gible influence on our system, and we ignore the rotation of Mars.
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❸ execute plan Let us use ri for the initial Mars-probe radial center-to-center separation distance, rf = ∞  for the final separa-tion distance, RM for the radius of Mars, and mM and mp for the two masses. We begin with Eq. 13.23:
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 vesc =B2(6.67 × 10-11 N # m2>kg2) 
6.42 × 1023 kg
3.40 × 106 m  = 5.02 × 103 m>s = 5 km>s. ✔

Notice that this speed does not depend on the mass of the probe. A probe of any other size shot from the cannon would need the same minimum speed to break free of Mars’s gravitational pull.❹ evaluate result Our algebraic expression for the escape speed is plausible because it involves the mass of Mars, the ini-tial center-to-center radial separation distance of our two objects (which is Mars’s radius), and G. We expect vesc to increase with mM because the gravitational pull increases with increasing mass. We also expect vesc to decrease as the distance between the launch position and Mars’s center increases because the gravitational force exerted by the planet on the probe decreases with increasing separa-tion distance. All this is just what our result predicts.An escape speed of 18,000 km/h is smaller than (but on the order of) the escape speed from Earth, and so the answer is not unreasonable.We assumed that the initial Mars-probe separation distance is equal to the planet’s radius. Of course, the length of the cannon may be tens of meters, but this tiny difference would have no impact on the numerical answer. We ignored the rotation of Mars, which could supply a small amount of the needed kinetic energy. We also ignored the effect of the Sun, which is fine for getting away from the surface of Mars, but we would need to account for it if the destina-tion was another star.
Guided problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided to use a compressed spring to launch a spacecraft. If the spring constant is 100,000 N/m and the mass of the spacecraft is 10,000 kg, how far must the spring be compressed in order to launch the craft to a position outside Earth’s gravitational influence?
❶ GettinG started
  1. Describe the problem in your own words. Are there similarities to Worked Problem 13.3?  2. Draw a diagram showing the initial and final states. What is the spacecraft’s situation in the final state?  3. How does the spacecraft gain the necessary escape speed?

❷ devise plan
  4. What law of physics should you invoke?

  5. As the spring is compressed, is the gravitational potential energy of the Earth-spacecraft system affected? If so, can you ignore this effect?  6. What equation allows you to relate the initial and final states?❸ execute plan
  7. What is your target unknown quantity? Algebraically isolate it on one side of your equation.  8. Substitute the numerical values you know to get a numerical answer.

❹ evaluate result
  9. Is your algebraic expression for the compression plausible for how the compression changes as the spring constant and Earth’s mass and radius change?10. If you were the head of a design team, would you recommend pursuing this launch method?

Figure WG13.3 

❷ devise plan We can use conservation of energy because the probe has all of the needed kinetic energy at the beginning, as it is shot from a cannon. As the probe travels, this kinetic energy is con-verted to gravitational potential energy of the Mars-probe system. We want to know the initial speed of the probe acquired at launch. The initial potential energy is the value when the probe is still near the Martian surface. The final state of the probe is zero speed at an infinite distance from Mars. The Principles volume analyzes a simi-lar situation in Section 13.7, leading to Eq. 13.23, so there is no need to derive this result again here. We begin with Eq. 13.23, solving this version of an energy conservation equation for vi = vesc in terms of the known quantities.

Worked problem 13.3 escape at last
The Mars Colony wants to launch a deep-space probe, but they have no rocket engines. They decide to launch a probe with an electro-magnetic cannon, which means they must launch at escape speed. Determine this speed.

❶ GettinG started Let us do a quick sketch to help our think-ing (Figure WG13.3). We select the Mars-probe system for analysis. In order to reach “deep space,” the probe must attain a very great distance from Mars. This will require a significant amount of initial kinetic energy, which the probe must acquire during launch. After launch, the kinetic energy immediately begins to decrease, and the potential energy of the Mars-probe system increases as the separa-tion distance increases. We assume a reference frame where Mars is fixed and only the probe moves. When the probe is far enough away (infinity, really, but practically it doesn’t need to go quite this far), the kinetic energy has its minimum value, which we can take to be zero because the colonists presumably do not want to supply any more energy than needed to get the probe out there. The gravi-tational potential energy has its maximum value, which is also zero. (Remember that universal gravitational potential energy is nega-tive.) We also assume that the Sun and other planets have a negli-gible influence on our system, and we ignore the rotation of Mars.
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