Laser-processing of semiconductors and (some) applications

HUCE Lunch Seminar Cambridge, MIA, 31 January 2014

Renee Sher

Yu-Ting Lin

Kasey Philips

Ben Franta

and also....

Marc Winkler Eric Diebold Haifei Albert Zhang Dr. Brian Tull Dr. Jim Carey (SiOnyx) Prof. Tsing-Hua Her (UNC Charlotte) Dr. Shrenik Deliwala Dr. Richard Finlay Dr. Michael Sheehy Dr. Claudia Wu Dr. Rebecca Younkin Prof. Catherine Crouch (Swarthmore) Prof. Mengyan Shen (Lowell U) Prof. Li Zhao (Fudan U)

> Dr. Elizabeth Landis Dr. John Chervinsky

Prof. Alan Aspuru-Guzik Prof. Michael Aziz Prof. Michael Brenner Prof. Cynthia Friend Prof. Howard Stone Dr. Martin Pralle (SiOnyx) and everyone else at SiOnyx...

Prof. Tonio Buonassisi (MIT) Prof. Silvija Gradecak (MIT) Prof. Jeff Grossman (MIT) Dr. Bonna Newman (MIT) Joe Sullivan (MIT) Matthew Smith (MIT)

Prof. Augustinus Asenbaum (Vienna)

Dr. François Génin (LLNL) Mark Wall (LLNL)

Dr. Richard Farrell (RMD) Dr. Arieh Karger (RMD) Dr. Richard Meyers (RMD)

Dr. Pat Maloney (NVSED)

Dr. Jeffrey Warrander (ARDEC)

irradiate with 100-fs 10 kJ/m² pulses

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

absorptance
$$(1 - R_{int} - T_{int})$$

silicon transparent in IR

visible

silicon transparent in IR

visible

roughening doesn't change IR transmission...

polished

unpolished

roughening doesn't change IR transmission...

polished

unpolished

...but black silicon blocks IR completely

visible

...but black silicon blocks IR completely

visible

black silicon completely black in IR

visible

absorptance
$$(1 - R_{int} - T_{int})$$

laser treatment causes:

- surface structuring
- inclusion of dopants

black silicon "flavors"

black silicon "flavors"

cross-sectional Transmission Electron Microscopy

M. Wall, F. Génin (LLNL)

1 µm

decouple ablation from melting

decouple ablation from melting

ероху		
laser affected region		
substrate		
100 nm		

decouple ablation from melting

decouple ablation from melting

2 intermediate band

properties

gap determines optical and electronic properties

2 intermediate band

properties

shallow-level dopants control electronic properties

2 intermediate band

properties

deep-level dopants typically avoided

2 intermediate band

properties

1 part in 10⁶ sulfur introduces donor states in gap

Janzén et al., Phys. Rev. B 29, 1907 (1984)

properties

1

at high concentration states broaden into band

properties

10⁻⁶ sulfur doping

2 intermediate band

properties

laser-doped S:Si

2 intermediate band

properties

laser-doped S:Si

2 intermediate band

properties

laser-doped S:Si

2 intermediate band

properties

should have shallow junction below surface

excellent rectification (after annealing)

1 properties

1 properties

1 properties

properties

1

properties

1

properties

enhanced sensitivity

• extended IR response

near-IR is next wave in imaging!

gesture recognition

image: fastcolabs.com

1 properties

night vision

wikimedia.org

1 properties

robotics

1 properties

www.sionyx.com

1 properties

intermediate band

SiOnyx

Combine state-of-the-art low-noise CMOS image

sensor design with enhanced quantum efficiency

US Patents: US 8,058,615; US 7,928,355; US 7,968,834

1 properties

intermediate band

SiOnyx

Resolution	pixel (µm)	noise (e/pix)	/ _{dark} (e/pix/s)	<i>P</i> (mW)
872 x 654	5.6	2.1	24	300
1280 x 720	5.6	2.1	24	360
1280 x 1024	10	2.6	83	400
	8" CIS 4T pixe	process flow el architectur	e	

SiOnyx

2 intermediate band

properties

no compromises in visible

Sony color CCD

no compromises in visible

Sony color CCD

SiOnyx XQE sensor

90+ dB dynamic range

Sony color CCD

90+ dB dynamic range

Sony color CCD

SiOnyx X1 sensor

SiOnyx

0.9 mlux irradiance from 2850 K source

SiOnyx (50 mm, F1.4, 30 fps)

properties

properties

properties

3D imaging for gesture user interface (850 nm)

2 intermediate band

properties

intermediate band

2

properties

SiOnyx (F1.4, 33 ms, 24x)

SiOnyx (F1.4, 33 ms, 24x)

reference (F1.4, 33 ms, 24x)

SiOnyx

SiOnyx (F1.4, 33 ms, 24x)

reference (F1.4, 33 ms, 24x)

no image processing

SiOnyx (F1.4, 33 ms, 24x)

reference (F1.4, 33 ms, 24x) 2x DIGITAL GAIN ADDED

no image processing

intermediate band

SiOnyx

2 intermediate band

properties

SiOnyx

1 properties

starlight illumination

clear, moonless night (laser targeting spot: 30 µJ at 100 m)

1 properties

Things to keep in mind

properties

- can turn absorption into carrier generation
- very high responsivity in VIS and NIR

Things to keep in mind

can turn absorption into carrier generation

very high responsivity in VIS and NIR

disruptive improvement in Si imaging

Summary

- new doping process
- new class of material
- new types of devices

Funding:

Army Research Office DARPA Department of Energy NDSEG National Science Foundation

for more information and a copy of this presentation:

mazur.harvard.edu

Follow me!

eric_mazur

sionyx.com

SiOnyx