The Principles and Practice of Physics

Unjversty of Vichigan Asss fioor Nil 14 Februany 2018

(6)

Math, not

Physics?!

killmatios

$v=\frac{w}{k}=\frac{\lambda}{T}=\lambda F$
展

$\frac{\Delta L}{\lambda}=0, y^{2}$ folly reastrative

$\Delta E_{\text {int }}=Q_{\text {in }}-W_{\text {out }} \quad P_{\text {cand }}=\frac{Q}{t}=k_{0} \frac{T_{T}-T_{C}}{L}$
$\rightarrow-1$
$P x=\frac{A(18-t)}{248}$
$f^{\prime}=f \frac{v \pm v_{s}}{v \pm v_{s}}$
$B=(10) \log \frac{I}{I_{0}}$
$T_{F}=\frac{9}{5} T_{C}+32 \quad \Delta \mathrm{~V}=V \beta \Delta \mathrm{~T}$
Alon.ino.
Nullit

trenferrontion
$\log _{0} x=y \Leftrightarrow c t x$
$\Delta E=-w$
IVEaft
$5: 17,0^{-8} w$
$P_{a f s}=\sigma<\Delta T^{4}$

$$
\begin{aligned}
& \text { killematios "Ergos } \\
& \qquad \vec{F}=m \vec{a}
\end{aligned}
$$

sinematios

$$
\vec{F}=m \vec{a}
$$

$$
\begin{aligned}
& \text { kinematioss "Cocrers } \\
& \qquad \vec{F}=m \vec{a} \\
& \text { momentum }
\end{aligned}
$$

$$
\text { kinematios } \text { vecios }_{\text {ves }}
$$

conservation of energy

conservation of momentum

conservation of energy

Just algebra!

conservation of momentum

The historical approach

- Newton's laws
- Momentum (and conservation)
- Collisions
- Work and energy
- Conservation of energy

The historical approach

- Newton's laws
- Momentum (and conservation)
- Collisions
- Work and energy
- Conservation of energy

The historical approach

150 years of tradition

- Newton's laws
- Momentum (and conservation)
- Collisions
- Work and energy
- Conservation of energy

Ernst Mach (1838-1916)

- Newton's laws
- Momentum (and conservation)
- Collisions
- Work and energy
- Conservation of energy

Ernst Mach (1838-1916)

- Collisions
- Conservation of momentum
- Newton's laws
- Work and energy
- Conservation of energy

Ernst Mach (1838-1916)

- Collisions (experimental)
- Conservation of momentum (experimental)
- Newton's laws
- Work and energy
- Conservation of energy
wouldn't it be nice if we could start simple?

we can!

PRINCIPLES \& PRACTICE OF PHYSICS

Principles and Practice of Physics

- Conservation of momentum
- Conservation of energy
- Interactions
- Force
- Work

Principles and Practice of Physics

- Conservation of momentum (experimental)
- Conservation of energy (experimental)
- Interactions
- Force
- Work

Principles and Practice of Physics

- Conservation of momentum (experimental)
- Conservation of enerov and
- Interactions
- Force

What about engineers?

- Work

Principles and Practice of Physics

- Conservation of momentum (experimental)
- Conservation of energy (experimental)
- Interactions
- Force
- Work

Principles and Pran ysics

PRINCIPLES \& PRACTICE OF PHYSICS

PRINCIPLES \& PRACTICE OF
PHYSICS

(1) architecture

PRINCIPLES \& PRACTICE OF
PHYSICS

(1) architecture
(2) content

PRINCIPLES \& PRACTICE OF
PHYSICS

ERIC MAZUR
${ }^{\text {PM }}$ PYSICS
(2) content
(3) results

PRINCIPLES \& PRACTICE OF
PHYSICS

(1) architecture

why 2 books?

(1) architecture
(1) architecture

Practice

PRINCIPLES

More logical!

- Unity
- Focus on physics
(1) architecture

Practice

More practical!

- Contexts different - Lighter
(1) architecture

PRINCIPLES \& PRACTICE OF

(1) architecture

PRINCIPLES \& PRACTICE OF

Energy
5.1 Classification of collisions
5.2 Kinetic energy
5.3 Internal energy
5.4 Closed systems
5.5 Elastic collisions
5.6 Inelastic collisions
5.7 Conservation of energy
5.8 Explosive separations

PRINCIPLES \& PRACTICE OF

Energy

5.1 Classification of collisions

5.2 Kinetic energy
5.3 Internal energy
5.4 Closed systems
5.5 Elastic collisions
5.6 Inelastic collisions
5.7 Conservation of energy
5.8 Explosive separations

Energy

5.1 Classification of collisions
5.2 Kinetic energy
5.3 Internal energy
5.4 Closed systems
5.5 Elastic collisions

56 Inalantio anllisions
5.7 Conservation of energy
5.8 Explosive separations

(1) architecture

- motion. We therefore begin our Circular motion occurs ton by describing circular motion. a spinning CD , a all around us. A speck of dust stuck a person on a Ferris are being whirled around on a string, pe circle, repeating storel travel along the perimeter of a takes place in a wheel-ation over and over. Circular motion teveloped all the their mond so in principle we have already devclap and rotaplane, a required to describe it. To describe chatogous tools reque whall follow an approach that tional we followed for the description use the same to the Exploiting this analogy, we can the in a motion. Explinshts gained in earlier chapters to introduce results

11. Circular motion at constant speed

 les of circular motion: a block Figure 11.2 shows two exa a rotating turntable and a puck dragged along a circle by in a circle. The block and constrained by a string to move the vertical axis through puck are said to revolve around Note that the axis about the center of each circular pah. Ne block and puck and which they revolve is external the This is the definiperpendicular to the plane of corcular motion around an tion of revolve-to move in and internal axis external center. Objects that turn about an said to rotate. exter as the turntable in Figure 11.2a, arelated because a These two types of motion are clos a system of an enor rotating object can be considered as a ding around the axis number of particles, each res of rotation.Figure 112 Examples of circular motion
(a) Block revolves on rotating turntable
(b) Rotational motion
-

cortion and rotation
(c) Combined translac sollow different trajectories.

Different points on object follow
ation of collisions
nergy
nergy
stems
gy
a)

teach concepts using

verbal and visual

 representationsation of collisions
nergy
pnergy
/stems

1. Two carts are about to collide head-on on a track. The inertia of cart 1 is greater than the inertia of cart 2 , and the collision is elastic. The speed of cart 1 before the collision is higher than the speed of cart 2 before the collision. (a) Which cart experiences the greater acceleration during the collision? (b) Which cart has the greater change in momentum due to the collision? (c) Which cart has the greater change in kinetic energy during the collision?
2. Which of the following deformations are reversible and which are irreversible: (a) the deformation of a tennis ball against a racquet, (b) the deformation of a car fender during a traffic accident, (c) the of a tennis ball against a racquet, blown up, (d) the deformation of fresh snow as you walk through it?
3. Translate the kinetic energy graph in Figure 7.2 into three sets of energy bars: before the collision, during the collision, and after the collision. In each set, include a bar for K_{1}, a bar for K_{2}, and a bar for the internal energy of the system, and assume that the system is closed.
4. Describe a scenario to fit the energy bars shown in Figure 7.22. What happens during the interaction?

Figure 7.22
Figure 7.23
0
©

cation of collisions
5. Describe a scenario to fit the velocity-versus-time curves for two colliding objects shown in Figure 7.23. What happens to the initial energy of the system of colliding objects during the interaction?

Answers

. (a) The cart with the smaller inertia experiences the greater acceleration (see Figure 7.2). (b) The magnitude of $\Delta \vec{p}_{1}$ is the same as the magnitude of $\Delta \vec{p}_{2}$, but the changes are in opposite directions because the momentum of the system does not change during the collision. (c) $\left|\Delta K_{1}\right|=\left|\Delta K_{2}\right|$, but the changes are opposite in sign because the kinetic e
(a) Reversible. The ball returns to its original shape. (b) Irreversible. The fender remains crumpled. (c) Irreversible.
2. (a) Reversible. The ball returns to its original shape. (b) Irreversible. The fender remains crumpled. (c) Irreversibe
The balloon does not completely return to its original shape after deflation. (d) Irreversible. Your footprints The ballo
See Figure 7.24. Before the collision $K_{1}=0, K_{2}$ is maximal, Figure 7.24 and $E_{\text {int }}=0$; during the collision K_{1}, K_{2}, and $E_{\text {int }}$ are all
and about one-third of the initial value of K_{1}; after the collision K_{1} is about $7 / 8$ of the initial value of K_{1}, K_{2} is about $1 / 8$ of the initial value of K_{1}, and $E_{\text {int }}=0$. Because the system is closed, its energy is constant, which means the sum of the three bars is always the sam

4. During the interaction, eight units of source energy is converted to two units of kinetic energy, two units of potential energy, and four units of thermal energ. On from just scenario is the vertical launching of a ball. Consider the system comprising you, the distance upward: The source energy goes down (you exe (the ball was at rest before the launch), and so does potential energy (the distance between the ground and the ball increases).
5. The graph represents an inelastic collision because the relative velocity of the two objects decreases to about 5. The graph represents an inelastic collision because the restem to remain constant, the inertia of object 1 must he twice that of object 2. Possible scenario: Object 2, inertia m, collides inelastically with object 1, inertia $2 m$. Ther celct to kinetic energy of cart 1 and to thermal energy and/or incoherent configuration energy of both carts.
energy

1) architecture

Energy

5.1 Classification of collisions
5.2 Kinetic enerav
5.3 Internal energy
5.4 Closed systems
5.5 Elastic collisions
5.6 Inelastic collisions
5.7 Conservation of energy
5.8 Explosive separations

6．5 Galilean relativity

Consider two observers，A and B，moving at constant velocity relative to each respective reference frames and same event and describe it relative to their observers＇reference frames and clocks（Figure 6．13）．Let the origins of the two event as happening at pes coincide at $t=0$（Figure 6．13a）．Observer A sees the sees the event at position \vec{r}_{Be} at clock reading $t_{\text {Ae }}$ at （Figure 6．13b）．＊Observer B tween these clock readings and positions？ If，as we discussed in Chater 1 ，
where－and if the two observers have synchronized absolute－the same every both observe the event at the same clock readized their（identical）clocks，they

$$
t_{\mathrm{Ae}}=t_{\mathrm{Be}}
$$

subscripts referring readings of the two observers always agree，we can omit the to the reference frames：

$$
\begin{equation*}
t_{\mathrm{A}}=t_{\mathrm{B}}=t . \tag{6.2}
\end{equation*}
$$

From Figure 6.13 we see that the position $\vec{r}_{A B}$ of observer B in refer－ $\Delta t=t_{\mathrm{e}}-0=0$ at instant t_{e} is equal to B＇s displacement over the time interval $\vec{v}_{A B}$ ．Therefore t_{e} ，and so $r_{A B}=\vec{v}_{A B} t_{e}$ because B moves at constant velocity

$$
\begin{equation*}
\vec{r}_{\mathrm{Ae}}=\vec{r}_{\mathrm{AB}}+\vec{r}_{\mathrm{Be}}=\vec{v}_{\mathrm{AB}} t_{\mathrm{e}}+\vec{r}_{\mathrm{Be}} . \tag{6.3}
\end{equation*}
$$

Equations 6.2 and 6.3 allow us to relate event data collected in one reference constant velocity relative to thent e collected in a reference frame that moves a to Earth，but their origins must first one（neither of these has to be at rest relative equations so that they give the valueide at $t=0$ ）．To this end we rewrite these quations so that they give the values of time and position in reference frame B

Figure 6．13 Two observers moving relative to each other observe the same event
relative to observer A．（a）The origins O of the two reference frames overlap at instant $t=0 .(b)$ Ates at constant velocity $\vec{v}_{A B}$
occurs，the origin of observer B＇s reference frem
．
（a）$t_{\mathrm{A}}=t_{\mathrm{B}}=0$

1）architecture

build on conceptual underpinnings to effectively teach

 quantitative tools

 quantitative tools}
: collisions
tic collisions
ervation of energy
sive separations
(b) From Figure 10.18 I see that $\tan \theta=\left|F_{\text {sp }}^{c}\right|\left|/\left|F_{\text {spy }}^{c}\right|\right.$. For $\theta<45^{\circ}, \tan \theta<1$, and so $\left|F_{\text {sp }}^{c}\right|<\left|F_{\text {sp }}^{c}\right|$. Because $\left|F_{\text {spy }}^{c}\right|=F_{\text {Ep }}^{c}$ and $\left|F_{\mathrm{sp} x}^{c}\right|=F_{\mathrm{rp}}^{c}$, I find that for $\theta<45^{\circ}, F_{\mathrm{rp}}^{c}<F_{\mathrm{Ep}}^{\mathrm{G}}$. When $\theta>45^{\circ}, \tan \theta>1$, and so $\left|F_{\text {spx }}^{\mathrm{c}}\right|>\left|F_{\text {spy }}^{\mathrm{c}}\right|$ and $F_{\mathrm{rp}}^{\mathrm{c}}>F_{\mathrm{Ep}}^{\mathrm{G}} . V$ (c) $\left|\vec{F}_{\text {spy }}^{c}\right|=F_{\text {Ep }}^{G}$ and $F_{\text {sp }}^{c}=\sqrt{\left(F_{\text {sp }}^{c}\right)^{2}+\left(F_{\text {spy }}^{c}\right)^{2}}$. Therefore, $F_{\text {sp }}^{c}$ must always be larger than F_{Ep}^{G} when $\theta \neq 0 . V$
4 EVALUATE RESULT I know from experience that you have to pull harder to move a swing farther from its equilibrium position, and so my answer to part a makes sense. With regard to part b, when the swing is at rest at 45°, the forces F_{Fp}^{c} and $\vec{F}_{\mathrm{Ep}}^{G}$ on your friend make the same angle with the force $F_{\text {sp }}$, and so $\vec{F}_{\mathrm{rp}}^{c}$ and $\vec{F}_{\mathrm{Ep}}^{G}$ should be equal in magnitude. The force of gravity is independent of the angle, but the force exerted by the rope increases with increasing angle, and so it makes sense that for angles larger than $45^{\circ}, F_{\mathrm{rp}}^{c}$ is larger than $F_{\mathrm{Ep}}^{\mathrm{c}}$. In part c, because the vertical compone friend alwas has \vec{F}^{c} larger than \vec{F}^{G} as I found.

4

10.4 You decide to move a heavy file cabinet by sliding budge. Draw a free-body diagram for it.

10.4 Friction

The force that opposes your push on the file cabinet in Checkpoint 10.4 -the tangential component of the contact orce exerted by the floor on the cabinet-has to do with friction. If the floor were very slick or if the cabinet had casters, there would be little friction and your push would easily move the cabinet. Instead, you have to lean against it with all your strength until, with a jerk, it suddenly begins to slide. Once you get the cabinet moving, you must keep pushing to keep it in motion. If you stop pushing, friction stops the motion.
嵝 10.5 (a) Suppose you push the file cabinet just enough to keep it moving at constant speed. Draw a free-body diagram for the cabinet while it slides at constant speed. (b) Suddenly you stop pushing. Draw a free-body diagram for the file cabinet at this instant

Don't skip Checkpoint 10.5! It will be harder to under stand the rest of this section if you haven't thought about these situations.

Even though the normal and tangential components of e contact force exerted by the floor on the cabinet belong oo the same interaction, they behave differently and are usually treated as two separate forces: the normal component being called the normal force and the tangential component being called the force of friction.
To understand the difference between normal and fricional forces, consider a brick on a horizontal wooden plank ionpored both ends (Figure 10.19a). Because the brick is at rest, the normal force \vec{F}^{c} exerted by the plank on it is equal in magnitude to the gravitational force exerted in Now ine using your hand to push on on the the bal down exerted on the brick, like a the total downard for ber the nor spring und cor on the brick balances the combined
 downwar brick (Figure 10.19b). As you push down hars the plank bends more, and he normal force cos so to increase (Figure 10.19c) until you exceed the plank capacity to pro vide support and it snaps, at which point the normal force suddenly disappears (Figure 10.19d). So, normal forces tak on whatever value is required to prevent whatever is pushing down on a surface from moving through that surfaceup to the breaking point of the supporting material.

Next imagine that instead of pushing down on the brick of Figure $10.19 a$, you gently push it to the right, as in Figure 10.20. As long as you don't push hard, the brick remains at rest. This tells you that the horizontal forces exerted on the brick add to zero, and so the plank must be exerting on the brick a horizontal frictional force that is equal in magnitude to your push but in the opposite direc tion. This horizontal force is caused by microscopic bonds between the surfaces in contact. Whenever two objects are placed in contact, such bonds form at the extremities of microscopic bumps on the surfaces of the objects. When you try to slide the surfaces past each other, these tiny bonds prevent sideways motion. As you push the brick to the right, the bumps resist bending and, like microscopic springs, each bump exerts a force to the left. The net effect of all these microscopic forces is to hold the brick in place As you increase the force of your push, the bumps resis bending more and the tangential component of the contact force grows. This friction exerted by surfaces that are not moving relative to each other is called static friction.

Figure 10.19 A demonstration of the normal force.

$\begin{aligned} & \text { As you push harder, contact force exerted by } \\ & \text { plank on brick increases, supporting brick. }\end{aligned}$
$\begin{aligned} & \text { As you push harder, contact force exerted by } \\ & \text { plank on brick increases, supporting brick. }\end{aligned}$

alisions

ation of energy semarations
(b) From Figure 10.18 I see that $\tan \theta=\left|F_{\text {sp }}^{c}\right|\left|/\left|F_{\text {spy }}^{c}\right|\right.$. For $\theta<45^{\circ}, \tan \theta<1$, and so $\left|F_{\text {sp }}^{c} x\right|<\left|F_{\text {spy }}^{c}\right|$. Because $\left|F_{\text {spy }}^{c}\right|=F_{\text {Ep }}^{c}$ and $\left|F_{\mathrm{sp} x}^{c}\right|=F_{\mathrm{rp}}^{c}$, I find that for $\theta<45^{\circ}, F_{\mathrm{rp}}^{c}<F_{\mathrm{Ep}}^{\mathrm{G}}$. When $\theta>45^{\circ}, \tan \theta>1$, and so $\left|F_{\text {spx }}^{c}\right|>\left|F_{\text {spy }}^{c}\right|$ and $F_{\mathrm{rp}}^{c}>F_{\mathrm{Ep}}^{G} . V$ (c) $\left|\vec{F}_{\text {spy }}^{c}\right|=F_{\text {Ep }}^{G}$ and $F_{\text {sp }}^{c}=\sqrt{\left(F_{\text {sp }}^{c}\right)^{2}+\left(F_{\text {spy }}^{c}\right)^{2}}$. Therefore, $F_{\text {sp }}^{c}$ must always be larger than F_{Ep}^{G} when $\theta \neq 0 . \vee$
4 EVALUATE RESULT I know from experience that you have to pull harder to move a swing farther from its equilibrium position, and so my answer to part a makes sense. With regard to part b, when the swing is at rest at 45°, the forces F_{Fp}^{c} and F_{Ep}^{G} on your friend make the same angle with the force $F_{\text {sp }}$, and so $\vec{F}_{\mathrm{rp}}^{c}$ and $\vec{F}_{\mathrm{Ep}}^{G}$ should be equal in magnitude. The force of gravity is independent of the angle, but the force exerted by the rope increases with increasing angle, and so it makes sense that for angles larger than $45^{\circ}, \vec{F}_{\mathrm{cp}}^{c}$ is larger than $\vec{F}_{\mathrm{Ex}}^{G}$. In part c, because the vertical component of the force \vec{F}_{sp}. friend alwas has \vec{F}^{c} larger than \vec{F}^{G} as I found.

4

10.4 You decide to move a heavy file cabinet by sliding across the floor. You push against the cabinet, but it doesnt budge. Draw a free-body diagram for it.

10.4 Friction

The force that opposes your push on the file cabinet in Checkpoint 10.4 -the tangential component of the contact orce exerted by the floor on the cabinet-has to do with riction. If the floor were very slick or if the cabinet had casters, there would be little friction and your push would easily move the cabinet. Instead, you have to lean against it with all your strength until, with a jerk, it suddenly begins to slide. Once you get the cabinet moving, you must keep phing if you stop ming, friction o the motion.
(徵 10.5 (a) Suppose you push the file cabinet just enough to
10.5 (a) Suppose you push the file cabinet just eiagram fo keep it moving a constanes
the cabinet while it slides at constant speed. (b) Suddenly you stop pushing. Draw a free-body diagram for the file cabinet at this instant.
skip Checkpoint 10.5! It will be harder
these situations.

Even though the normal and tangential components of e contact force exerted by the floor on the cabinet belong to the same interaction, they behave differently and are usually treated as two separate forces: the normal compohent being called the normal force and the tangential component being called the force of friction.
To understand the difference between normal and fricional forces, consider a brick on a horizontal wooden plank tional beth ends (Figure 10.19a). Because the brick is at rest the normal force \vec{F}^{c} exerted by the plank on it is equal in magnitude to the gravitational force exerted it Now im using your hand to push down on on the the bere forted on the brick, and, like a the total downard for spring und corts on the brick balances the combined mal force it exers on har bro downward 10). As y , pord brick (Figure 10.19b). As you purn down, plank bends more, and the normal force cow (Figure 10.19c) until you exceed the plank capacity to pro vide support and it snaps, at which point the normal force suddenly disappears (Figure 10.19a). So, normal forces take on whatever value is required to prevent whatever is push ing down on a surface from moving through that surfaceup to the breaking point of the supporting material.

Next imagine that instead of pushing down on the brick of Figure 10.19a, you gently push it to the right, as in Figure 10.20. As long as you don't push hard, the brick remains at rest. This tells you that the horizontal forces exerted on the brick add to zero, and so the plank must be exerting on the brick a horizontal frictional force that is equal in magnitude to your push but in the opposite direction. This horizontal force is caused by microscopic bonds between the surfaces in contact. Whenever two objects are placed in contact, such bonds form at the extremities of microscopic bumps on the surfaces of the objects. When you try to slide the surfaces past each other, these tiny nds prevent sideways motion. As you push the brick to right, the bumps resist bending and, like microscopic ings, each bump exerts a force to the left. The net effect all these microscopic forces is to hold the brick in place. As you increase the force of your push, the bumps resis Asending more and the tangential component of the contact frce grows. This friction exerted by surfaces that are not moving relative to each other is called static friction.

Figure 10.19 A demonstration of the normal force.

cation of collisions energy
energy
systems

10.4 Friction

The force that opposes your push on the file cabinet in Checkpoint 10.4 -the tangential component of the contact force exerted by the floor on the cabinet-has to do with friction. If the floor were very slick or if the cabinet had casters, there would be little friction and your push would easily move the cabinet. Instead, you have to lean against it with all your strength until, with a jerk, it suddenly begins to slide. Once you get the cabinet moving, you must keep pushing to keep it in motion. If you stop pushing, friction stops the motion.

10.5 (a) Suppose you push the file cabinet just enough to keep it moving at constant speed. Draw a free-body diagram for the cabinet while it slides at constant speed. (b) Suddenly you stop pushing. Draw a free-body diagram for the file cabinet at this instant.

Don't skip Checkpoint 10.5! It will be harder to understand the rest of this section if you haven't thought about these situations.

Figure 10.19 A demonstration of the normal force.

10.4 Friction

The force that opposes your push on the file cabinet in Checkpoint 10.4 -the tangential component of the contact force exerted by the floor on the cabinet-has to do with friction. If the floor were very slick or if the cabinet had casters, there would be little friction and your push would easily move the cabinet. Instead, you have to lean against it with all your strength until, with a jerk, it suddenly begins to slide. Once you get the cabinet moving, you must keep pushing to keep it in motion. If you stop pushing, friction stops the motion.
10.5 (a) Suppose you push the file cabinet just enough to
cation of collisions
energy
energy
systems keep it moving at constant speed. Draw a free-body diagram for the cabinet while it slides at constant speed. (b) Suddenly you stop pushing. Draw a free-body diagram for the file cabinet at this instant.

Don't skip Checkpoint 10.5! It will be harder to understand the rest of this section if you haven't thought about these situations.

Figure 10.19 A demonstration of the normal force.

Figure 19.14 Probability of finding a given fraction of the system's energy in compartment A of the box in Figure 19.13. As the number of energy units increases from 10 to 1000 , the probability distribution
becomes narrower but remains centered about the mean energy.

fraction of energy in A
basic states available to the system is obtained by multiply ing Ω_{A} by $\Omega_{\mathrm{B}}: \Omega=\Omega_{\mathrm{A}} \Omega_{\mathrm{B}}$.
The probability of each macrostate is obtained by di viding Ω, the number of basic states associated with that macrostate, by $\Omega_{\text {tot }}$ the number of basic states associated with all macrostates (2.00×10^{7}; see Table 19.2). The table shows you that this probability is greatest for the macro tate $E_{\mathrm{A}}=7$, as you would expect. Given that there are 14 particles in A and six in B, on average each particle has hal an energy unit, and so the $E_{\mathrm{A}}=7$ macrostate correspon oo an equipartitioning of the energy. The curve labeled 10 nits in Figure 19.14 shows this probability as a function of the fraction of energy contained in A.

Example 19.6 Probability of macrostates

In Figure 19.13, after a very large number of particle-partition collisions have occurred, what is the probability of finding the system in (a) the macrostate $E_{\mathrm{A}}=1$ and (b) the macrostate

GEtting started Because all basic states are equally likely, the probability of finding the system in macrostate E_{A} is equal to the fraction $\Omega / \Omega_{\text {tot }}$ where Ω is the number of basic states of the system associated with the macrostate E_{A} and $\Omega_{\text {tot }}$ is . 00×10^{7}. Table 19.2 . (2.00 $\times 10^{\text {; }}$; Table 19.2).
(2) DEVISE PLAN To find the probability of a given macrostate ${ }_{A}$, I divide the value of Ω for that macrostate given in Table 19.2 $\Omega_{\mathrm{tot}}=2.00 \times 10^{7}$.
3 EXECUTE PLAN (a) For $E_{\mathrm{A}}=1$, Table 19.2 tells me that $\Omega=2.80 \times 10^{4}$. The probability of macrostate $E_{\mathrm{A}}=1$ is thus $\left(2.80 \times 10^{4}\right) /\left(2.00 \times 10^{7}\right)=1.40 \times 10^{-3}$. V
(b) For the macrostate $E_{\mathrm{A}}=7, \Omega=4.34 \times 10^{6}$. So the probabil ity of this macrostate occurring is $\left(4.34 \times 10^{6}\right) /\left(2.00 \times 10^{7}\right)=$ 2.17×10^{-1}. V
4 evaluate result My result shows that the macrostate $E_{\mathrm{A}}=7$ is more than 150 times more probable than the macro tate $E_{\mathrm{A}}=1$. This makes sense because, as we saw earlier, the macrostate $E_{\mathrm{A}}=7$ is the equilibrium state for which there is an equipartition of energy.

If we increase the number of energy units in the box of Figure 19.13 to 100 or 1000 , the number of basic states grows exponentially, and if we plot the probability of each macrostate as a function of the fraction of energy in A, we obtain the two curves labeled 100 and 1000 in Figure 19.14 Just as we saw in Figure 19.7, the most probable macro state doesn't change, but the probability peaks much mor narrowly around this state. In other words, the most prob likely than ane equilibrium state-is now even more kely than any other macrostate
Note that the number of basic states is very large, even with just ten energy units and 20 particles. In a box of vol ume $1 \mathrm{~m}^{3}$ containing air at atmospheric pressure and room temperature, there are on the order of 10^{25} particles and 10 energy units per particle, and so the number of basic states becomes unimaginably large-on the order of ten raised to the power 10^{2} ! Because the number of basic states is so large, it is more convenient to work with the natural logarithm of that number. As you can see from the right most column in Table 19.2, the natural logarithm of the number of basic states is indeed much more manageable.
Figure 19.15 shows how the natural logarithms of Ω_{A}, Ω_{B} and Ω vary with the number of energy units in compartment A in Figure 19.13. As you can see, the natural logarithm of the number of basic states changes much less rapidly than the number of basic states. Note that as E_{A} increases, the num ber of basic states Ω_{A} increases. As E_{A} increases, however, E_{B} decreases and so Ω_{B} decreases. The number of basic states Ω is maximum when $E_{\mathrm{A}}=7$ and $E_{\mathrm{B}}=3$, representing an equipartition of energy. The most probable macrostate (equilibrium) is achieved when there is equipartition of energy.峌
19.15 What is the average energy per particle in compar ments A and B in Figure 19.13 (a) when there is one energy unt in A and (b) when the system is at equilibrium?

As you can see from Table 19.2, with $E_{\mathrm{A}}=1$ the number of basic states for the system $\left(2.80 \times 10^{4}\right)$ is more than 100 times smaller than it is at equilibrium $\left(E_{\mathrm{A}}=7, \Omega=4.34 \times 10^{6}\right)$. Collisions between the particles and the partition redistribute

Figure 19.15 Natural logarithm of the number of basic states for compartment A, for compartment B, and for the two compartments in ximal when the

fication of collisions
energy
al energy
d systems

1 architecture

Figure 19．14 Probability of finding a given fraction of the system＇s energy in compartment A of the box in Figure 19．13．As the number of energy units increases from 10 to 1000 ，the probability distributio
becomes narrower but remains centered about the mean energy．

fraction of energy in A
basic states available to the system is obtained by multiply－ ing Ω_{A} by $\Omega_{\mathrm{B}}: \Omega=\Omega_{\mathrm{A}} \Omega_{\mathrm{B}}$ ．
The probability of each macrostate is obtained by di viding Ω ，the number of basic states associated with that macrostate，by $\Omega_{\text {tot }}$ the number of basic states associated with all macrostates（ 2.00×10^{7} ；see Table 19．2）．The table shows you that this probability is greatest for the macro tate $E_{\mathrm{A}}=7$ ，as you would expect．Given that there are 14 articles in A and six in B，on average each particle has ha to an equipartitio $E_{\mathrm{A}}-7$ macrostate correspond units in Figu 19．14 of his ne fractio

crostates
n Figure 19．13，after a very large number of partic collisions have occurred，what is the probability of finding $E_{\mathrm{A}}=7$ ？ （a）the macrostate $E_{\mathrm{A}}=1$ and（b）the macros
（1）GEtting Started Because all basic states are equally likely the probability of finding the system in macrostate E_{A} is equal of the fraction $\Omega / \Omega_{\text {tot }}$ where Ω is the number of basic states of the system associated with the macrostate E_{A} and $\Omega_{\text {tot }}$ is the total number of basic states associated with all macrostates
（2）DEVISE PLAN To find the probability of a given macrostate E_{A} ，I divide the value of Ω for that macrostate given in Table 19.2 y $\Omega_{\text {tot }}=2.00 \times 10^{7}$ ．
（3）EXECUTE PLAN（a）For $E_{\mathrm{A}}=1$ ，Table 19.2 tells me that $\Omega=2.80 \times 10^{4}$ ．The probability of macrostate $E_{\mathrm{A}}=1$ is thus $\left(2.80 \times 10^{4}\right) /\left(2.00 \times 10^{7}\right)=1.40 \times 10^{-3}$ ．V
（b）For the macrostate $E_{\mathrm{A}}=7, \Omega=4.34 \times 10^{6}$ ．So the probabil y of this macrostate occurring is $\left(4.34 \times 10^{6}\right) /\left(2.00 \times 10^{7}\right)=$ $2.17 \times 10^{-1} . V$
evaluate result my result shows that acro
$E_{\mathrm{A}}=7$ is more than 150 times more probable than the m
crostate $E_{\mathrm{A}}=7$ is the equilibrium state for which
ition of energy．

If we increase the number of energy units in the box of Figure 19.13 to 100 or 1000 ，the number of basic states grows exponentially，and if we plot the probability of each macrostate as a function of the fraction of energy in A，we obtain the two curves labeled 100 and 1000 in Figure 19.14 Just as we saw in Figure 19．7，the most probable macro state doesn＇t change，but the probability peaks much mor narrowly around this state．In other words，the most prob likely than equilibrium state－is now even more kely than any other macrostate
Note that the number of basic states is very large，even with just ten energy units and 20 particles．In a box of vol ume $1 \mathrm{~m}^{3}$ containing air at atmospheric pressure and room temperature，there are on the order of 10^{25} particles and 100^{2} energy units per particle，and so the number of basi states becomes unimaginably large－on the order of ten raised to the power 10^{21} ！Because the number of basic states is so large，it is more convenient to work with the natural logarithm of that number．As you can see from the right most column in lable 19．2，the natural logarithm of the number of basic states is indeed much more manageable． Figure 19.15 shows how the natural logarithms of Ω_{A}, Ω_{B} and Ω vary with the number of energy units in compartment A in Figure 19．13．As you can see，the natural logarithm of the number of basic states changes much less rapidly than the number of basic states．Note that as E_{A} increases，the num－ ber of basic states Ω_{A} increases．As E_{A} increases，however，E_{B} decreases and so Ω_{B} decreases．The number of basic states Ω is maximum when $E_{\mathrm{A}}=7$ and $E_{\mathrm{B}}=3$ ，representing an equipartition of energy．The most probable macrostate（equi－ librium）is achieved when there is equipartition of energy．追 ments A hat is the average enes particle in compart in A and (b) when the system is athil in A and（b）when the system is at equilibrium？

As you can see from Table 19．2，with $E_{\mathrm{A}}=1$ the number of sic states for the system $\left(2.80 \times 10^{4}\right)$ is more than 100 times aller than it is at equilibrium $\left(E_{\mathrm{A}}=7, \Omega=4.34 \times 10^{6}\right)$ ． C lisions between the particles and the partition redistribute
e 19．15 Natural logarithm of the number of basic states for om artment A，for compartment B，and for the two compartments in igu： 19.13 combined．The number of basic states is maximal when the is equipartitioned（seven energy units in A）

equiprtition
fication of collisions
energy
al energy
d systems

1）architecture

Example 19.6 Probability of macrostates

In Figure 19.13, after a very large number of particle-partition collisions have occurred, what is the probability of finding the system in (a) the macrostate $E_{\mathrm{A}}=1$ and (b) the macrostate $E_{\mathrm{A}}=7$?
(1) GETTING STARTED Because all basic states are equally likely, the probability of finding the system in macrostate E_{A} is equal to the fraction $\Omega / \Omega_{\text {tot }}$, where Ω is the number of basic states of the system associated with the macrostate E_{A} and Ω_{tot} is the total number of basic states associated with all macrostates (2.00 $\times 10^{7}$; Table 19.2).

2 DEVISE PLAN To find the probability of a given macrostate E_{A}, I divide the value of Ω for that macrostate given in Table 19.2 by $\Omega_{\text {tot }}=2.00 \times 10^{7}$.
(3) EXECUTE PLAN (a) For $E_{\mathrm{A}}=1$, Table 19.2 tells me that
fication of collisions
energy
al energy
d systems $\Omega=2.80 \times 10^{4}$. The probability of macrostate $E_{\mathrm{A}}=1$ is thus $\left(2.80 \times 10^{4}\right) /\left(2.00 \times 10^{7}\right)=1.40 \times 10^{-3}$.
(b) For the macrostate $E_{\mathrm{A}}=7, \Omega=4.34 \times 10^{6}$. So the probability of this macrostate occurring is $\left(4.34 \times 10^{6}\right) /\left(2.00 \times 10^{7}\right)=$ 2.17×10^{-1}.
(4) EVALUATE RESULT My result shows that the macrostate $E_{\mathrm{A}}=7$ is more than 150 times more probable than the macrostate $E_{\mathrm{A}}=1$. This makes sense because, as we saw earlier, the macrostate $E_{\mathrm{A}}=7$ is the equilibrium state for which there is an equipartition of energy.

1 architecture

Example 19.6 Probability of macrostates

In Figure 19.13, after a very large number of particle-partition collisions have occurred, what is the probability of finding the system in (a) the macrostate $E_{\mathrm{A}}=1$ and (b) the macrostate $E_{\mathrm{A}}=7$?
(1) GETTING STARTED Because all basic states are equally likely, the probability of finding the system in macrostate E_{A} is equal to the fraction $\Omega / \Omega_{\text {tot }}$, where Ω is the number of basic states of the system associated with the macrostate E_{A} and Ω_{tot} is the total number of basic states associated with all macrostates (2.00 $\times 10^{7}$; Table 19.2).
(2) DEVISE PLAN To find the probability of a given macrostate $E_{\mathrm{A}}, \mathrm{I}$ divide the value of Ω for that macrostate given in Table 19.2 by $\Omega_{\text {tot }}=2.00 \times 10^{7}$.
(3) EXECUTE PLAN (a) For $E_{\mathrm{A}}=1$, Table 19.2 tells me that
fication of collisions
energy
al energy
d systems $\Omega=2.80 \times 10^{4}$. The probability of macrostate $E_{\mathrm{A}}=1$ is thus $\left(2.80 \times 10^{4}\right) /\left(2.00 \times 10^{7}\right)=1.40 \times 10^{-3}$.
(b) For the macrostate $E_{\mathrm{A}}=7, \Omega=4.34 \times 10^{6}$. So the probability of this macrostate occurring is $\left(4.34 \times 10^{6}\right) /\left(2.00 \times 10^{7}\right)=$ 2.17×10^{-1}.
(4) EVALUATE RESULT My result shows that the macrostate $E_{\mathrm{A}}=7$ is more than 150 times more probable than the macrostate $E_{\mathrm{A}}=1$. This makes sense because, as we saw earlier, the macrostate $E_{\mathrm{A}}=7$ is the equilibrium state for which there is an equipartition of energy.

1 architecture

वाCIIEELUIE

In time interval shown, observer B advances this distance.

Vis represenations.

PRINCIPLES VOLUME

- concepts before quantitative tools
- checkpoints to thinking
- 4-step worked examples
- research-based illustrations
- research-based pedagogy

ERIC MAZUR

PRACTICE
 Waves in Two and Three Dimensions

Chapter Summary 304
Review Questions 305
Developing a Feel 306
Worked and Guided Problems 307
Questions and Problems 311
Answers to Review Questions 316
Answers to Guided Problems 316

PRACTICE
 Waves in Two and Three Dimensions

Chapter Summary 304
Review Questions 305
Developing a Feel 306
Worked and Guided Problems 307
Questions and Problems 311
Answers to Review Questions 316
Answers to Guided Problems 316

PRACTICE
 Waves in Two Three Dimens

Developing a Feel

Wake an order-of-meg reel

Make an order-of-mas os needed to guide your thinking:
on the equator as Earth rotates (D, P)

1. The speed v of a point on the equator as arut an axis tangent to
2. The rotational inertia
its surface (A, R, X) turn over in your sleep (V, C)
3. Your rotational inertia as you turd the axle of a wheel/tire combi-
4. The angular momentum arounise on the freeway ($\mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{AA}, \mathrm{S}$)
nation on your car as you cruise on ting ice skater with each arm
5. The angular momentum of a spinning ice ske $(\mathrm{G}, \mathrm{X}, \mathrm{N}, \mathrm{U})$
held out to the side and parallel to the ice (G

Hints

What is the inertia of a bowling ball?
A. What is the time interval is needed for Earth to make one revolu-
B. Howlongad the Sun?

What simple geometric shape is an appropriate model for a sleeping person?
What is Earth's rotational speed?
E. What is the combined inertia of the whee and acceleration for this

What?
G. How can you model the skater's shap
H. What is the inertia of a midss
I. What
. What is the yo-yo's rotational inertia?
L. What is the radius of Earth's orbit?
M. What is the perpendicular line of motion? What is the skater's rotational inertia with allinertia of the whe
N. What is the skaters s the combined rotational inertia of the whe O. and tire? What is Earths radius?
. What is the final rotational speed?
R. What is the radius ofal speed of the tire?
S. What is the rotational speed of aceleration?
6. The 1 itude of the force exerted by the Sun on Ear 7. The magnitude of $\mathrm{L}, \mathrm{T}, \mathrm{Z}$)

The kinetic energy associated with Earth's rotation ($\mathrm{Z}, \mathrm{P}, \mathrm{D}$)
8. The kinetic en cementum, about a vertical axis through
9. The angular moter
9. The angular a arge car driving down your street (H, Q
house, of a

What is the skater's initial rotational speed
What is your inertia?
V. What is youn how long a time inter W. When thrown, how strin?
reach the end oeded in addition to the formulas in Principles
Table 11.3 in order to determine this quantity?
Table is a typical speed for a car moving on a city street?
Y. What is a typical speed
Z. What is a typical freeway cruising speed?

Key (all values approximate) $\quad 0.2 \mathrm{~m}$; A. 7 kg ; B. $1 \mathrm{y}=3 \times 10^{7} \mathrm{~s} ;$ C. solic cylin $10^{1} \mathrm{~kg}$; F. from A. 7 kg , B. $1 \mathrm{y}=24$, so $\omega=7 \times 10^{-5} \mathrm{~s}^{-1} ; \mathrm{E} .10^{1} \mathrm{~kg}$; F. from
D. period $=24 \mathrm{~h}$, 1 solid Eqs. 8.6, 8.17, and 11.16, $\sum F=m a$, so m g 4 kg held out perpencylinder with two thin-rod arms of $\mathrm{J} .2 \times 10^{1}$ turns; dicularly; $\mathrm{H} .2 \times 10^{-5} \mathrm{~kg}$, . ${ }^{-5}$. mo modeled as solid cylinder); $\mathrm{K} .6 \times 10^{-5} \mathrm{~kg} \mathrm{~m} .2 \times 10^{1} \mathrm{~m} ; \mathrm{N} .4 \mathrm{~kg} \cdot \mathrm{~m}^{2} ;$ O. between ${ }^{2}$. L. $2 \times 10^{\circ} \mathrm{m}$; M. representing tire) and $M R^{2} / 2$ (solic cymut (cylindrical shellel)-say, $3 \mathrm{MR}^{2} / 4 ; \mathrm{P} .6 \times 10^{6} \mathrm{~m}$; Q. about twi represenerage rotational speed, or $\omega=5 \times 1 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$; S. no slipping, so $\omega=v / r \approx 10^{2} \mathrm{~s}$; $18 \times$ X the parallel-axis U. $\omega \approx 10 \mathrm{~s}^{-1} ; \mathrm{V} .7 \times 10^{1} \mathrm{~kg} ; \mathrm{W} .0 .5 \mathrm{~s} ; \mathrm{X}$.
theorem; Y. $3 \times 10^{1} \mathrm{mi} / \mathrm{h} ; \mathrm{Z} .6 \times 10^{24} \mathrm{~kg} ; \mathrm{AA} .3 \times 10^{1} \mathrm{~m} / \mathrm{s}$

PRACTICE
 Waves in Two Three Dimens

Chapter Summary 304
Review Questions 305
Developing a Feel 306
Worked and Guided Problems 307
Questions and Problems 311
Answers to Review Questions 316
Answers to Guided Problems 316

Developing a Feel

Make an order-of-magnitude estimate of each our thinking:
hints below. Use them as needed (D, P)

1. The speed v of a point on the equator as Eart an axis tangent to
2. The rotational inertia
its surface ($\mathrm{A}, \mathrm{R}, \mathrm{X}$)
3. Your rotational inertia as you the axle of a wheel/tire combi
4. The angular momentum arounise on the freeway ($\mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{AA}, \mathrm{S}$
nation on your car as soum of a spinning ice skater with each arm
5. The angular momentum of a spinning ice ske $(\mathrm{X}, \mathrm{X}, \mathrm{U})$
held out to the side and parallel to the ice (G)

Hints

A. inertia of a bowling ball?
A. What is the time interval is needed for Earth to make one revolu-
B. Howlong tion around the Sun?

What simple geomet shape is an appropriate model for a sleeping person?
What is Earth's rotational speed?
D. What is the combined inertia of the wheela acceleration for this

What? ?
G. How can you mode the skaters car?
H. What is the inertia of a midsise?

What sod to rewind the yo-yo?
What is the yo-yo's rotational inertia?
L. What is the radius of Earth's orbit?
M. What is the perpendicular distance
line of motion? What is the skater's rotational inertia with ars inertia of the whe
N. What is the skatersel the combined rotational inertia of the whe O. and tire? What is Earth's radius?
What is the final rotational speed?
R. What is the radius ofal speed of the tire?
S. What is the required centripetal acceleration?
. ${ }^{2}$'s initial rotational speed
What is your inertia?
V. What is yo wh long a time inter When throw, of the string?
reach is needed in addition to the formulas in Principles
Table 11.3 in order to determine this quantity?
. What is a typical speed for a car moving on
Z. What is Earth's inertia

AA. What is a typical freeway cruising speed?

Key (all values approximate) \quad celd cylinder of radius 0.2 m ; A. 7 kg ; B. $1 \mathrm{y}=3 \times 10^{7}$ s; C. solid cylinder $10^{1} \mathrm{~kg} ;$ F. from A. 7 kg B. $1 \mathrm{y}=24$, so $\omega=7 \times 10^{-5} \mathrm{~s}^{-1} ;$ E. $10^{1} \mathrm{~kg}$; F. from
D. period $=24 \mathrm{~h}$, solid Eqs. 8.6, 8.17, and 11.16, $\Sigma \mathrm{F}=m$ a, so m g 4 kg held out perpencylinder with two thin-rod arms on $\mathrm{J} .2 \times 10^{1}$ turns; dicularly; $\mathrm{H} .2 \times 10^{3} \mathrm{~kg} ; 10$. modeled as solid cylinder); K. $6 \times 10^{11} \mathrm{~kg} \cdot \mathrm{M} .2 \times 10^{1} \mathrm{~m} ; \mathrm{N} .4 \mathrm{~kg} \cdot \mathrm{~m}^{2} ; \mathrm{O}$. between 1 der L. $2 \times 10^{\circ} \mathrm{m}$; M. rylindrical shell representing tire) and $M R^{2} / 2$ (solid cylinder (cylindrical wheel)-say, $3 \mathrm{MR}^{2} / 4 ; \mathrm{P} .6 \times 10^{2} \mathrm{~m}$; Q. abour the average rotational speed, or $\omega=5 \times 10^{2}$. $\mathrm{m} / \mathrm{s}^{2}$; S. no slipping, so $\omega=v / r \approx 10^{2} \mathrm{~s}$; S . X. the parallel-axis U. $\omega \approx 10 \mathrm{~s}^{-1} ; \mathrm{V} .7 \times 10^{1} \mathrm{~kg} ; \mathrm{W} .0 .5 \mathrm{~s} ; \mathrm{X}$.
theorem; Y. $3 \times 10^{1} \mathrm{mi} / \mathrm{h} ; \mathrm{Z} .6 \times 10^{24} \mathrm{~kg} ; \mathrm{AA} .3 \times 10^{1} \mathrm{~m} / \mathrm{s}$

PRACTICE

Waves in Two

 Three Dimens
192

Developing a Feel

Make an order-of-magnitude estimate of each of the as needed to gide your thinking:
hints below. Use them as needed os

1. The speed v of a point on the equator as Earth rotates (D, P)
2. The speed v of a point on the ewling ball about
its surface (A, R, X)
3. Your rotational inertia as you turn over in yoy seep (V, C)
4. The angular momentum around the axle ow e ($\mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{AA}, \mathrm{S}$
nation on your car as you cruise on the (ce skater with each arm
5. The angular momentum of a spinniy the skater the ($\mathrm{G}, \mathrm{X}, \mathrm{N}, \mathrm{U}$)
held out to the side and parallel

Hints
If needed, see Key for O wers to these guiding questions.
A. What is the certia of a bowling ball?
A. What is the hertia of a bowling ball? ? marth to make one revolu

nd the Sun?
at simple geo

hat is Earth's rotational speed?
wheel and tir
E. What is the combined inertia of the wheel and tire?
orbit? G. How can you model the skater's shar?
H. What is the inertia of a midsize
. What is the radius of the tire?
J. How many turns are needed tor inertia?
K. What is the yo-yo's rotation'h orbit?
L. What is the radius
M. What is the perp?
N. What is the skater's rotational inertia with armsertia of the whe
N. How can you model th
O. and tire?

What is Earths radius?
Q. What is the final rotational speed?
R. What is the radius of al speed of the tire?
S. What is the rotational speed of la acceleration?

is the skater's initial rotational speed?

What is your inertia?
reach the end of the string?
What is needed in addition to the foantity?
Table 11.3 in order to determine this quan on a city street?
What is a typical speed for a car or
Z. What is Earth's inertia
Z. What is a typical freeway cruising speed?

Key (all values approximate) \quad. solid cylinder of radius 0.2 m ; A. 7 kg , B. $1 \mathrm{y}=3 \times 10^{7} \mathrm{~s} ;$ C. Sold ${ }^{-5} \mathrm{~s}^{-1}$; E. $10^{1} \mathrm{~kg}$; F. from D.per.6. 8.17 , and $11.16, \Sigma \vec{F}=m a$, so $m s$ gg held out perpencylinder with two thin-rod arms of $\mathrm{J} .2 \times 10^{1}$ turns; dicularly; H. $2 \times 10^{3} \mathrm{~kg} ; 1.0$ modeled as solid cylinder); K. $6 \times 10^{11} \mathrm{~kg} \cdot \mathrm{~m} .2 \times 10^{1} \mathrm{~m} ; \mathrm{N} .4 \mathrm{~kg} \cdot \mathrm{~m}^{2} ;$ O. between $M \mathrm{R}^{2}$ L. $2 \times 10^{11} \mathrm{~m} ; \mathrm{M} .2 \times 1$ rylindrical shell representing tire) and $M \mathrm{R}^{2} / 2$ (solid cylinder (cylindrical shees)-say, $3 \mathrm{MR}^{2} / 4 ;$ P. $6 \times 10^{6} \mathrm{~m}$; Q. about represerage rotational speed, or $\omega=5 \times 1 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$; S. no slipping, so $\omega=v / r \approx 10^{2}$ s. . X. the parallel-axis

PRACTICE

Waves in Two

 Three DimensChapter Summary 304
Review Questions 305
Developing a Feel 306
Worked and Guided Problems 307
Questions and Problems 311
Answers to Review Questions 316
Answers to Guided Problems 316

Developing a Feel

Make an order-of-magnitude estimate of each of thefor
hints below. Use them as needd

1. The speed v of a point on the equator as Earth rotates (D, P) 1. The speed v of a point on the erling ball about
its surface (A, R, X)
2. Your rotational inertia as you turn over in yoy seep (V, C)
. The angular momentum around the axle of wheel/tire combi-
3. The angular momen as you cruise on the eeway ($\mathrm{E}, \mathrm{I}, \mathrm{O}, \mathrm{AA}, \mathrm{S}$
nation on your car as
4. The angular momentum of a spinnin ce skater with each
5. The angular momentum of a spinniy he the side and parallely (G, X, N, U)
would need to orbit Earth in a low orbit (F, P) 6. The speed you wouth force exerted by the Sun on Earth to ho 7. The magnitude ($\mathrm{L}, \mathrm{T}, \mathrm{Z}$)

Earth in ortic energy associated with Earth's rotation $(Z, \mathrm{P}, \mathrm{D}$ y 8. The kinetic energentum, about a vertical axis through
9. The angula momen
house, of a large car driving down your ($\mathrm{K}, \mathrm{W}, \mathrm{J}, \mathrm{Q}$)

What is the skater's initial rotational speed.

What is your inertia? W. When thrown, how long a
reach the end of the string?
What is needed in addition to the formity?
Table 11.3 in order to determine this quan on a city street?
What is a typical speed for
Z. What is Earth's inertia?
. What is a typical freeway cruising speed?

Key (all values approximate) 0.2 m ; A. 7 kg ; B. $1 \mathrm{y}=3 \times 10^{\circ} \mathrm{s} ;$ C. sold ${ }^{-1}$, E. $10^{1} \mathrm{~kg}$; F.from D. period $=24 \mathrm{~h}$, so $\omega-, \vec{F}=m \vec{a}$, so $m g=m v^{2} / r$; G. a solid cylinder with two thin-rod arms of inerta 10^{1} turns; dicularly; $\mathrm{H} .2 \times 10^{-5} \mathrm{~kg}$; yo-yo modeled as solid cylinder); K. $6 \times 10^{11} \mathrm{~kg} \cdot \mathrm{~m} .2 \times 10^{1} \mathrm{~m} ; \mathrm{N} .4 \mathrm{~kg} \cdot \mathrm{~m}^{2} ;$ O. between $M \mathrm{R}^{2}$ L. $2 \times 10^{\circ} \mathrm{m}$; M. representing tire) and $M R^{2} / 2$ (solid cyinder (cylindrical shelsel) - say, $3 \mathrm{MR}^{2} / 4$; P. $6 \times 10^{6} \mathrm{~m}$; Q. Qabout represenerage rotational speed, or $\omega=5 \times 1 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$; S. no slipping, so $\omega=v / r \approx 10^{2} \mathrm{~s}$; $18 \times$. the parallel-axis U. $\omega \approx 1 \mathrm{~s}^{-1} ; \mathrm{V} .7 \times 10^{1} \mathrm{~kg} ;$ W. $6 \times 10^{24} \mathrm{~kg} ; \mathrm{AA} .3 \times 10^{1} \mathrm{~m} / \mathrm{s}$ U. $\omega \approx$ I $\mathrm{Y} .3 \times 10^{1} \mathrm{mi} / \mathrm{h} ; \mathrm{Z} .6 \times 10^{24} \mathrm{~kg} ; \mathrm{AA} .3 \times 10 \mathrm{~m}$

PRACTICE

Waves in Two

 Three DimensChapter Summary 304
Review Questions 305
Developing a Feel 306
Worked and Guided Problems 307
Questions and Problems 311
Answers to Review Questions 316
Answers to Guided Problems 316

Developing a Feel

Make an order-of-magnitude estimate of each of them as needed to guide your thinking:

1. The speed v of a point on the equator as Earth rotates $(\mathrm{D}, \mathrm{P}$ to 2. The rotational inertia of
its surface (A,
2. The angular momentum arounis on the freeway ($\mathrm{E}, \mathrm{O}, \mathrm{AA}, \mathrm{S}$)
nation on your car as you cruise ning ice skater ith each ar
3. The angular momentum of a spinnipg (hes
held out to the side and paralle to the ice $(\mathrm{G}, 7 \mathrm{~N}, \mathrm{U})$

Hints

A. What is the mertia of a bowling b/f? for Earth to make one revolu-
B. How longa time interval is

C. What simple geometric
C. steeping person?
 orbit?
How

G. How can you mo the ine of a midsize car?
I. What is the ry/ius of the tire?
J. How many rns are needed to rewtia?
K. What is ty yo-yo's rotationa orbit?
L. What is Me radus ondicular distance from the house to the car's
M. What the perion?
line meld
N. W/ at is the skater's rotational inertia with arms hertia of the whee
N. W/ at is the skater's state combined rotational inertia of the whe and tire?
P. What is trat final rotational speed?
Q. What is the final ro o a bowling ball?
R. What is the radius of
s. What is the rotation centripetal acceleration?
T. What is the required centripetal acceleration?

What is the skater's initial rotational speed?
What is your inertia? W. When thrown, how long a
reach the end of the string?
x. What is needed in addition to the formult?

Table 11.3 in order to determine this quan on a city street?
Y. What is a typical speed for ang on
Y. What is Earth's inertia?
Z. What is a typical freeway cruising speed?

Key (all values approximate) \quad. olid cylinder of radius 0.2 m ; A. 7 kg ; B. $1 \mathrm{y}=3 \times 10^{7} \mathrm{~s} ;$ C. solid cylan D. period $=24 \mathrm{~h}$, so $\omega=\omega \vec{F}=m \vec{a}$, so $m g=m v^{2} r$; G. a sold cylinder with two thin-rod arms of nert $\times 10^{1}$ turns; dicularly; $\mathrm{H} .2 \times 10^{3} \mathrm{~kg} ; 1.5$
 L. $2 \times 10 \mathrm{~m}$; cylindrical shell representing tire) and $M R^{2} / 2$ (solid cylinder (cylindrical shell representing ${ }^{2}$) P. $6 \times 10^{6} \mathrm{~m}$; Q. about twice represerage rotational speed, or $\omega=5 \times 1 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$; the average s. slipping, so $\omega=v / r \approx 10^{2} \mathrm{~s}^{1}$; $1.8 \times$. U. $\omega \approx 10 \mathrm{~s}^{-1} ; \mathrm{V} .7 \times 10^{1} \mathrm{~kg} ;$ W. theorem; Y. $3 \times 10^{1} \mathrm{mi} / \mathrm{h} ; \mathrm{Z} .6 \times 10^{24} \mathrm{~kg} ; \mathrm{AA} .3 \times 10 \mathrm{~m} /$

PRACTICE
 Waves in Two Three Dimens

Chapter Summary 304
Review Questions 305
Developing a Feel 306
Worked and Guided Problems 307
Questions and Problems 311
Answers to Review Questions 316
Answers to Guided Problems 316

Developing a Feel

Make an order-of-magnitude estimate of each of the guide your thinking:
hints below. Use them as needed to
hints below. Use them as heed. Earth rotates

1. The speed v of a point on the equator as Earth rotates $(\mathrm{D}, \mathrm{P}$) 2. The rotational inertia of
its surface $(\mathrm{A}, \mathrm{R}, \mathrm{X})$ a yo sou turn over in yourseep
2. Your rotational inertia as
3. The angular momentum around the axde freeway $(\mathrm{E}, \mathrm{O}, \mathrm{AA}, \mathrm{S})$
nation on your car as you cruise on thing ice skater ith each arm
4. The angular momentum of a spinnine
held out to the side and parallel to the

Hints

A. What is the mertia of a bowling b/ ? ? Earth to make one revolu-
B. How longa time interval is

C. What simple geometric
C. steping person?

G. How can you mo e the skater's car?
I. What is the ry /us of the tire?
J. How many rns are needed to rewit?
K. What is ty yo-yos rotational inertia?
K. What is ty yo-yos
L. What is eradius of Earth's orbit?
L. What is ne radius ondicular distance from the house to the car's
M. Wha motion? N. W) at is the skater's rotational inertia with arms hetia of the wheel o. w can you model the con
and tire?
p. What is Earth's radius?
onal speed? Q. What is the final rotational speed? R. What is the radius of a bowling boll?
S. What is the rotational speed of al acceleration?

What is the skater's initial rotational speed?
What is your inertia?
W. When thrown, how long a
reach the end of the string?
What is needed in addition to the foantity?
Table 11.3 in order to determine this quant a a city street?
y. What is a typical speed for car noting on
Z. What is Earth's inertia?
Z. What is a typical freeway cruising speed?

Key (all values approximate) \quad. olid cylinder of radius 0.2 m ; A. 7 kg ; B. $1 \mathrm{y}=3 \times 10^{7} \mathrm{~s}$; C. solid cylind
 cylinder with two thin-rod arms of inertua 10^{1} turns; dicularly; $\mathrm{H} .2 \times 10^{3} \mathrm{~kg} ; 1.5$ K. $6 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(w 10^{1} \mathrm{~m} ; \mathrm{N} .4 \mathrm{~kg} \cdot \mathrm{~m}^{2} ;\right.$ O. between MR L. $2 \times 10^{11} \mathrm{~m}$; M. $2 \times 10 \mathrm{~m}$; N.
(cylindrical shell representing tire) and $M R^{2} / 2$ (solid cylinder
a

 $\mathrm{U} . \omega \approx 10 \mathrm{~s}^{-1} ; \mathrm{V} .7 \times 10 \mathrm{mg}, 6 \times 10^{24} \mathrm{~kg} ; \mathrm{AA} .3 \times 10^{1} \mathrm{~m} / \mathrm{s}$
theorem; Y. $3 \times 10^{1} \mathrm{mi} / \mathrm{Z} .6$
PRACTICE

PRACTICE Waves in Two Three Dimens

PRACTICE
 Waves in Two and Three Dimensions

Chapter Summary 304
Review Questions 305
Developing a Feel 306
Worked and Guided Problems 307
Questions and Problems 311
Answers to Review Questions 316
Answers to Guided Problems 316

PRACTICE
 Waves in Two a Three Dimensi

238 CHAPTER 13 PRACTICE GRAVITY

Worked Problem 13.3 Escape at las

The Mars Colony w
no rocket engines. They decide to lounch a probe with they hav Determine thison, which means they must launch at escan electro
-

We sele a quetch to help our think In order to reach "deep spacee" the probe probe system for analysis. distance from Mars. This will require a significant antain a very great kinetic energy, which the probe must acquire during launch initial
launch, the launch, the kinetic energy immediately begins to decrease, After tion distance increases. We probe system increases as the separ is fixed and only the probe assume a reference frame where Mars away (infinity, really, but practically When the probe is far enough far), the kinetic energy has its minimum doesn't need to go quite this to be zero because the colonists presumably do which we can take any more energy than needed to get the probe not want to supply tational potential energy has its maximum value which. The gravi (Remember that universal gravitational potential energy iso zero.
tive.) We also assume tive.) We also assume that the Sun and other planets have a negg-
gible influence on our system er system, and we ignore the rotation of Mars
Figure WG13.3

(2) devise plan we can use consert
probe has all of the needed kinetic energy at the beginning because the
shot from a cannon shot from a cannon. As the probe travels the the beginning, as it is verted to gravitational potential energy of the Mars- epergy is conWe want to know the initial speed of the probe acquired a system.
The initial potentital The initial potential energy is the value when the probe is still near
the Martian surface the Martian surface. The final state of the probe is zero speed near
infinite distance from lar situation in Section 13.7. leading Principles volume analyzes a simito derive this result again here. We beginq. 13.23 , so there is no need version of an energy conservation begin with Eq. 13.23 , solving this the known quantities.
Guided Problem 13.4 Spring to the stars
Suppose that, instead of using chemical rockets, NASA decided
to use a compressed spring to constant is is 100 ressed spring to launch a spacecraft If the decided kg , how far must the spring be compressed in order to to 10,000 craft to a position outside be compressed in order to launch the
fatational influence?
(1) getting started
. Describe the problem in your own words. Are there similarities
to Worked Problem 2. Draw a diagrablem 13.3?
the spacecraft's situation in the finial and final states. What is
How does the spacecraft gain the nal state?
(2) DEVISE PLAN
4. What law of physics should you invoke?

EXECUTE PLAN Let us use r_{i} for the initial Mars-probe radia tion distance, R_{M} for the radius of Mars $r_{\mathrm{f}}=\infty$ for the final separa masses. We begin with Eq. 13.23:
$E_{\text {mech }}=\frac{1}{2} m_{\mathrm{p}} v_{\text {esc }}^{2}-G \frac{m_{\mathrm{M}} m_{\mathrm{p}}}{R_{\mathrm{M}}}=0$
$\frac{1}{2} v_{\text {esc }}^{2}-G \frac{m_{M}}{R_{M}}=0$
$\frac{1}{2} v_{\text {esc }}^{2}=G \frac{m_{\mathrm{M}}}{R_{M}}$
$v_{\text {esc }}=\sqrt{2 G \frac{m_{M}}{R_{M}}}$

$$
\begin{aligned}
v_{\text {esc }} & =\sqrt{2\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \frac{6.42 \times 10^{23} \mathrm{~kg}}{3.40 \times 10^{6} \mathrm{~m}}} \\
& =502
\end{aligned}
$$

$$
=5.02 \times 10^{3} \mathrm{~m} / \mathrm{s}=5 \mathrm{~km} / \mathrm{s} . \mathrm{V}
$$

probe of any other size does not depend on the mass of the probe minimum speed to break free of the cannon would need the same (4) EVALUATE RESUIT Mars's gravitational pull. speed is plausible because it invaic expression for the escap tial center-to-center radial it involves the mass of Mars, the ini (which is Mars's radius) separation distance of our two objects m_{M} because the gravitational pull increast $v_{\text {esc }}$ to increase with We also expect $v_{\text {esc }}$ to decrease as the distases with increasing mass. position and Mars's center increases because thetween the launch xerted by the planet on the probe decreases with gravitational force An escape. All this is just what our result predicts. Af) the escape speed of $18,000 \mathrm{~km} / \mathrm{h}$ is smaller than We assumed that the Earth, and so the answer is not unreas orde equal to the planet's radius. Of course the se separation distance is be tens of meters, but this tiny difference length of the cannon may on the numerical answer. We ignored the would have no impact could supply a small amount of the needed kinetic of Mars, which surface of e effect of the Sun, which is fine for getting away. We also tion was another whed to account for it if the

As te
energy of the Earthmpressed is the gravitational potential ignore this effect? 6. What equation allo

3 execute plan
was your
one side of your equation. . Substitute the numerical val.
answer.

e evaluate result

9. Is your algebraic expression for the compression Earth's mass and radius changes as the spring constant and 10. If you were the radius change?
pursuing the head of a design team, would

PRACTICE
 Waves in Two a Three Dimensi

Worked Problem 13.3 Escape at last
The Mars Colony wants to
no rocket engines. They decide to launsh ace probe, but they hav Determineannon, which means they must launch with an electro Determine this speed.
(1) GETTIng STARTED Let us do a quick sketch to help our think In order to reach "deep space" the Mars-probe system for analysis. distance from Mars. This will require a signst attain a very great kinetic energy, which the probe must acquire during launch initial
launch, the aunch, the kinetic energy immediately begins to decrease, After tion distance increases. Wars-probe system increases as the separ is fixed and only the probe assume a reference frame where Mars away (infinity, really, but practically When the probe is far enough far), the kinetic energy has its minimuesn't need to go quite this to be zero because the colonists presumably do which we can take any more energy than needed to get the probe not want to supply tational potential energy has its maximum value there. The gravi (Remember that universal gravitational potential energy iso zero
tive.) We also assume tive.) We also assume that the Sun and other planets have a negg-
gible influence on our system or system, and we ignore the rotation of Megli
Figure WG13.3

probe has all of the needed kinetic energy of energy because the shot from a cannon. As the probe travels the the beginning, as it is verted to gravitational potential energy of the kinetic energy is conWe want to know the initial speed of the probe acquired a system.
The initial potentital The initial potential energy is the value when the probe is still
the Martian surface the Martian surface. The final state of the probe is zero is still nea lar situation in Section 13.7. The Principiples volume analyzees a simito derive this result again here. We beginq. 13.23 , so there is no need version of an energy conservation equation for v. 13.23 , solving this the known quantities.
Guided Problem 13.4 Spring to the stars
Suppose that, instead of using chemical rockets, NASA decided
to use a compressed spring to constant is 100 pressed spring to launch a spacecraft. If the decided kg , how far must the spring be compressed in order to to 10,000 craft to a position outside be compressed in order to launch the
tational influence?
(1) getting started

Describe the problem in your own words. Are there similarities
to Worked Problem 2. Draw a diagrablem 13.3?
the spacecraft's situation in the finial and final states. What is
How does the spacecraft gain the state?
(2) DEVISE PLAN
4. What law of physics should you invoke?
center-to-center separation distance the initial Mars-probe radial tion distance, R_{M} for the radius of Mars $r_{f}=\infty$ for the final separa masses. We begin with Eq. 13.23:
$E_{\text {mech }}=\frac{1}{2} m_{\mathrm{p}} v_{\text {esc }}^{2}-G \frac{m_{\mathrm{M}} m_{\mathrm{p}}}{R_{\mathrm{M}}}=0$
$\frac{1}{2} v_{\text {esc }}^{2}-G \frac{m_{M}}{R_{M}}=0$
$\frac{1}{2} v_{\text {esc }}^{2}=G \frac{m_{M}}{R_{M}}$
$v_{\text {esc }}=\sqrt{2 G \frac{m_{M}}{R_{M}}}$

$$
\begin{aligned}
v_{\mathrm{esc}} & =\sqrt{2\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \frac{6.42 \times 10^{23} \mathrm{~kg}}{3.40 \times 10^{6} \mathrm{~m}}} \\
& =502{ }^{2}
\end{aligned}
$$

$=5.02 \times 10^{3} \mathrm{~m} / \mathrm{s}=5 \mathrm{~km} / \mathrm{s} . \mathrm{V}$
probe of any other size does not depend on the mass of the probe minimum speed to break free of the cannon would need the same (4) EVALUATE RESUIT Sur Mars's gravitational pull. speed is plausible because it involves expression for the escap tial center-to-center radial involves the mass of Mars, the ini(which is Mars's radius) separation distance of our two objects m_{M} because the gravitational pull increct $v_{\text {esc }}$ to increase with We also expect $v_{\text {esc }}$ to decrease as the distases with increasing mass. position and Mars's center increases because thetween the launch xerted by the planet on the probe decreases with gravitational force An escape speed of is just what our result predicts. of) the escape speed of $18,000 \mathrm{~km} / \mathrm{h}$ is smaller than (b. We assumed that thearth, and so the answer is not unreasonte equal to the planet's radius. Of course the se separation distance is be tens of meters, but this tiny difference ength of the cannon may on the numerical answer. We ignored the rould have no impact could supply a small amount of the needed kinetic of Mars, which surface of Mars bu the Sun, which is fine for getting awgy. We also tion was anther weed to account for it if the

As the spring is compressed, is the gravitation ignore of the Earth-spacecraft system affected? If sotential ignore this effect?

3 execute plan
on one side of your unknown quantity? Algebraically isolate it Substitute the numerical
answer numerical values you know to get a numerical

e evaluate result

9. Is your algebraic expression for the compression Earth's mass and radius changes as the spring constant and 10. If you were the radius change?
pursuing the head of a design team, would your

PRACTICE Waves in Two Three Dimensid

238
CHAPTER 13 PRACTICE GRAVITY
Worked Problem 13.3 Escape at last
The Mars Colony wants to launch a deep-space probe, but they ha
no rocket engines. They decide to no rocket engines. They decide to launch a probe with they have Determine this speed
(1) GETTING STARTED Let us do ack ing (Figure WG13.3). We select the Mars sketch to help In order to reach "deep space," the probe must sytem fo inetic energy, which the probe mure a significant amount launch, the kinetic energy immediately b ton distance increases. Wars-probe syster ion distance increases. We
probe has all of the needed kineticervation of energy because the shot from a cannon. As the probe travels, this he beginning, as it is verted to gravitational potential energy of the Mars energy is con
We want to We want to know the initial speed of the probe acquired esystem. the Martian surfial energy is the value when the probe is still infinite distance from The final state of the probe is zero speed near lar situation in Section 13. The Principles volume analyzes a simito derive this result again here We bo Eq. 13.23, so there is no need version of an energy conservation begin with Eq. 13.23 , solving this the known quantities. Guided Problem 13.4 Spring to the stars
Suppose that, instead of using chemical rockets, NASA decide
to use a compressed constant is 100,000 Npring to launch a spacecraft. If the decided kg , how far must the spring the mass of the spacecraft is 10,000 craft to a position outside Ee compressed in order to launch the
(1) getting started

1. Describe the prob
to Worked Problem 13 3?
the spacecraft's situation in the initial and final states. What is
2. How does the spacecraft gain the necate?
center-to-center ser tion distance R is separat e initial Mars-probe radia $=\infty$ for the final separa d m_{M} and m_{p} for the two v_{M} $\boldsymbol{N}^{\frac{1}{2} v_{\text {esc }}^{2}-G \frac{m_{M}}{R_{M}}=0}$ $\frac{1}{2} v_{\text {esc }}^{2}=G \frac{m_{M}}{R_{M}}$
$v_{\text {esc }}=\sqrt{2 G \frac{m_{M}}{R_{M}}}$
$e_{\text {esc }}=\sqrt{2\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \frac{6.42 \times 10^{23} \mathrm{k}}{3.40 \times 10^{6}}}$ $=5.02 \times 10^{3} \mathrm{~m} / \mathrm{s}=5 \mathrm{~km} / \mathrm{s}$. probe of any other size shot from the canne mass of the probe. minimum speed to break free of the cannon would need the same (4) EVALUATE RESUIT Ou Mal pull. speed is plausible because it involves theression for the escape which is Ma-center radial separation distanse of Mars, the ini m_{M} because the gravitationd G. We expect $v_{\text {esc }}$ to increase with We also expect $v_{\text {esc }}$ to decrease as the distance bith increasing mass. position and Mars's center increases because the between the launch tion distance planet on the probe decreases with increasinal force An escape All this is just what our result predictsf) the escape speed of $18,000 \mathrm{~km} / \mathrm{h}$ is smaller than We assumed throm Earth, and so the answer is not unrea order equal to the planet's radius. Of course the epe separation distance is be tens of meters, but this tiny difference length of the cannon may on the numerical answer. We ignored the would have no impact ignored the a small amount of the needed kinetic of Mars, which surface the effect of the Sun, which is fine for getting awgy. We also tion was another whed to account for it if the

As
energy of the Earth ignore this effect?

3 execute plan
on one side of your unknown quantity? Algebraically isolate it Substitute the yur equation
answer

(4) Evaluate result

9. Is your algebraic expression for the compress for how the for how the compression changes as the spring constant and
Earth's mass and radiuschausion 10. If you were the radius change?
pursuing this launch method?

PRACTICE
 Waves in Two a Three Dimensi

238 CHAPTER 13 PRACTICE GRAVITY

Worked Problem 13.3 Escape at las

The Mars Colony w
no rocket engines. They decide to lounch a probe with they hav Determine this, which means they must launch at an an electro
-
We us do a quik sketch to help our think In order to reach "deep space", the Mars-probe system for analysis. distance from Mars. This will require a significant antain a very great kinetic energy, which the probe must acquire during launch initial
launch, the launch, the kinetic energy immediately begins to decrease, After tion distance increases. We probe system increases as the separ is fixed and only the probe assume a reference frame where Mars away (infinity, really, but practically When the probe is far enough far), the kinetic energy has its minimum doesn't need to go quite this to be zero because the colonists presumably do which we can take any more energy than needed to get the probe not want to supply tational potential energy has its maximum value where. The gravi (Remember that universal gravitational potential energy iso zero.
tive.) We also assume

$$
=5.02 \times 10^{3} \mathrm{~m} / \mathrm{s}=5 \mathrm{~km} / \mathrm{s} . \mathrm{V}
$$ tive.) We also assume that the Sun and other planets have a negg-

gible influence on our system er our system, and we ignore the rotation of Mars
Figure WG13.3

(2) Devise plan we can use court
probe has all of the needed kinetic energy at the beginning because the
shot from a cannon shot from a cannon. As the probe travels the the beginning, as it is verted to gravitational potential energy of the Mars- epergy is conWe want to know the initial speed of the probe acquired a system.
The initial potentital The initial potential energy is the value when the probe is still near
the Martian surface the Martian surface. The final state of the probe is zero speed near
infinite distance from lar situation in Section 13.7. leading Principles volume analyzes a simito derive this result again here. We beginq. 13.23 , so there is no need version of an energy conservation begin with Eq. 13.23 , solving this the known quantities.
Guided Problem 13.4 Spring to the stars
3 EXECUTE PLAN Let us use r_{i} for the initial Mars-probe radial tion distance, R_{M} for the radistance, $r_{f}=\infty$ for the final separa masses. We begin with Eq. 13.23:

$$
\begin{aligned}
E_{\text {mech }}=\frac{1}{2} m_{\mathrm{p}} v_{\mathrm{esc}}^{2}-G \frac{m_{\mathrm{M}} m_{\mathrm{p}}}{R_{\mathrm{M}}} & =0 \\
\frac{1}{2} v_{\mathrm{esc}}^{2}-G \frac{m_{M}}{R_{M}} & =0 \\
\frac{1}{2} v_{\mathrm{esc}}^{2} & =G \frac{m_{M}}{R_{M}} \\
v_{\mathrm{esc}} & =\sqrt{2 G \frac{m_{M}}{R_{M}}}
\end{aligned}
$$

$$
\begin{aligned}
v_{\mathrm{esc}} & =\sqrt{2\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right) \frac{6.42 \times 10^{23} \mathrm{~kg}}{3.40 \times 10^{6} \mathrm{~m}}} \\
& =502{ }^{2}
\end{aligned}
$$

probe of any other size shos not depend on the mass of the probe minimum speed to break free of the cannon would need the same (4) EVALUATE RESUT speed is plausible because it involves expression for the escap tial center-to-center radial it involves the mass of Mars, the ini(which is Mars's radius) separation distance of our two objects m_{M} because the gravitational pull ince expect $v_{\text {esc }}$ to increase with We also expect $v_{\text {esc }}$ to decrease as the distasce with increasing mass. position and Mars's center increases because the between the launch xerted by the planet on the probe decreases with gravitational force An escape. All this is just what our result predicts. Af) the escape speed of $18,000 \mathrm{~km} / \mathrm{h}$ is smaller than (b. We assumed that the Earth, and so the answer is not unreaso orde equal to the planet's radius. Of course thebe separation distance is be tens of meters, but this tiny difference whith of the cannon may on the numerical answer. We ignored the rotald have no impact
could supply could supply a small amount of the needed k kinetic of Mars, which
ignored the ignored the effect of the Sun, which is fine for getting away from also tion was anothe would need to account for it if the fin

Suppose that, instead of using chemical rockets, NASA decided
to use a compressed spring to la constant is 100 peos spring to launch a spacecraft. If the decided kg, how far must the spring be compressed the spacecraft is 10,000 craft to a position outside be compressed in order to launch the
grational influence?
(1) getting started
. Describe the problem in your own words. Are there similarities
to Worked Problem 2. Draw a diagram sh 13.3?
the spacecraft's situation in the finial and final states. What is
. How does the spacecraft gain the state?
(2) DEVISE PLAN
4. What law of physics should you invoke?
energy of the E compressed, is the gravitational potential gnore this efferth-spacecraft system affected? If so, can yo ignore this effect?

3 execute plan ras
on one side of your equation Aldy Aldabaly isolate it Substitute the numeri
answer

evaluate result

9. Is your algebraic expression for the compressior for how Earth's mass and radius changes as the spring constant and 10. If you were the radius change?
pursuing the head of a design team, would y our

PRACTICE
 Waves in Two a Three Dimensid

238 CHAPTER 13 PRACTICE GRAVITY
Worked Problem 13.3 Escape at last
The Mars Colony wants to launch a deep-space probe, but they have
no rocket engines. They decide to no rocket engines. They decide to launch a probe with they have Determine this speed means they must launch at escape speed.
(1) Getting started Let us do a quick sketch to help our ing (Figure WG13.3). We select the Mars-probe sys
In order to reach "deep space" the protch to
\qquad centertoctecenter
tion distance, R_{w} 4116 distance from Mars. This will," require a sig m
kinetic energy, which the proner kinetic energy, which the probe must acqui
launch, the kinetic energ launch, the kinetic energy immediately begit otential energy of the Mars-probe system i is fixed and only the pes. We assum
away (infinity, really,
$G \frac{m_{M}}{R_{M}}=0$
$\frac{1}{2} v_{\text {esc }}^{2}=G \frac{m_{M}}{R_{M}}$
$v_{\text {esc }}=\sqrt{2 G \frac{m_{M}}{R_{M}}}$
$=5.02 \times 10^{3} \mathrm{~m} / \mathrm{s}=5 \mathrm{~km} / \mathrm{s} . \vee$
probe of any other size shot from the on the mass of the probe. A minimum speed to break free the cannon would need the same (4) Evaluate resul fee of Mars's gravitational pull. speed is plausible because it involves the mass of the escape tial center-to-center radial it involves the mass of Mars, the ini(which is Mars's radius), and G. We distance of our two objects m_{M} because the gravitational pull increases $v_{\text {esc }}$ to increase with We also expect $v_{\text {esc }}$ to decrease as the distance with increasing mass. position and Mars's center increases because the between the launch exerted by the planet on the probe decreases with increasingal force An escape. All this is just what our result predicts An escape speed of $18,000 \mathrm{~km} / \mathrm{h}$ is smaller than (bescape of the escape speed from Earth, and so the answer is not on the order equal to the planet's radius. Of col Mars-probe separation distance is be tens of meters, but this tiny difference would the cannon may on the numerical answer. We ignored the would have no impact could supply a small amount of the needed tation of Mars, which ignored the effect of the Sun, which is fine for gettic energy. We also tion was another star would need to account for it if the destin tion was another star.

is gravitational potentia ignore this effect?

6. What equation allows you to relate the

3 execute plan
What is your target unk orn
on one side of your equation. . Substitute the numerical value
answer.
(4) evaluate result
9. Is your algebraic expression for the compression
for how the com for how the compression changes as the spring constant and
Earth's mass and radius change? Earth's mass and radius change?
If you were the head of a design
pursuing this launch method?

PRACTICE VOLUME

- not just end-of-chapter material
- many innovative features
- teaches authentic problem solving
(1) architecture

PRINCIPLES \& PRACTICE OF
PHYSICS

(1) architecture
(2) content

conservation principles before force laws?

1.1 The scientific method

1.2 Symmetry
1.3 Matter and the universe
1.4 Time and change
1.5 Representations
1.6 Physical quantities and units
1.7 Significant digits
1.8 Solving problems
1.9 Developing a feel

(2) content

(2) content

(1) architecture

(2) content

inertia m

systems \& extensive quantities

(1) architecture
(2) content

systems \& extensive quantities

(2) content

systems \& extensive quantities

systems \& extensive quantities

systems \& extensive quantities

(1) architecture
(2) content

systems \& extensive quantities

systems \& extensive quantities

input conserved quantity output

systems \& extensive quantities

conserved quantity
(1) architecture
(2) content

systems \& extensive quantities

conserved quantity in isolated system

can't change (constant)

systems \& extensive quantities

1) architecture

(2) content

1) architecture

(2) content

$$
\Delta \vec{p} \equiv \Delta \vec{p}_{1}+\Delta \vec{p}_{2}=\overrightarrow{0} .
$$

1) architecture

(2) content

$$
\Delta \vec{p} \equiv \Delta \vec{p}_{1}+\Delta \vec{p}_{2}=\overrightarrow{0} .
$$

1) architecture

(2) content

Energy

5.1 Classification of collisions
5.2 Kinetic energy
5.3 Internal energy
5.4 Closed systems
(2) content

elastic: relative speed unchanged

(2) content

elastic: relative speed unchanged

(2) content

elastic: relative speed unchanged

$$
v_{12 \mathrm{i}}=v_{12 \mathrm{f}}
$$

elastic: relative speed unchanged

$$
v_{12 \mathrm{i}}=v_{12 \mathrm{f}}
$$

$m_{1} v_{1 x, \mathrm{i}}+m_{2} v_{2 x, \mathrm{i}}=m_{1} v_{1 x, \mathrm{f}}+m_{2} v_{2 x, \mathrm{f}}$

elastic: relative speed unchanged

$$
\begin{aligned}
v_{12 \mathrm{i}} & =v_{12 \mathrm{f}} \\
& \boldsymbol{+} \\
m_{1} v_{1 x, \mathrm{i}}+m_{2} v_{2 x, \mathrm{i}} & =m_{1} v_{1 x, \mathrm{f}}+m_{2} v_{2 x, \mathrm{f}}
\end{aligned}
$$

elastic: relative speed unchanged

$$
\begin{gathered}
v_{12 \mathrm{i}}=v_{12 \mathrm{f}} \\
\boldsymbol{+} \\
m_{1} v_{1 x, \mathrm{i}}+m_{2} v_{2 x, \mathrm{i}}=m_{1} v_{1 x, \mathrm{f}}+m_{2} v_{2 x, \mathrm{f}} \\
\frac{1}{2} m_{1} v_{1 \mathrm{i}}^{2}+\frac{1}{2} m_{2} v_{2 \mathrm{i}}^{2}=\frac{1}{2} m_{1} v_{1 \mathrm{f}}^{2}+\frac{1}{2} m_{2} v_{2 \mathrm{f}}^{2}
\end{gathered}
$$

elastic vs. inelastic

elastic vs. inelastic

before or after?

elastic vs. inelastic

elastic: reversible inelastic: irreversible

elastic vs. inelastic

type relative speed state
elastic
inelastic
unchanged
changed
unchanged
changed

elastic vs. inelastic

type
elastic
inelastic
relative speed
state
unchanged
changed
ΔK
unchanged changed

elastic vs. inelastic

type
elastic inelastic
relative speed
unchanged
changed
ΔK
state
unchanged
changed
ΔE
int

conservation of energy

$$
E=K+E_{\mathrm{int}}
$$

conservation of energy

$$
E=K+E_{\mathrm{int}}
$$

closed system:

$$
\Delta E=0
$$

Principle of

 Relativity(2) content

inertial reference frames

Galilean relativity

(1) architecture
(2) content

(1) architecture
(2) content

7.1 The effects of interactions
 7.2 Potential energy
 7.3 Energy dissipation
 7.4 Source energy
 7.5 Interaction range
 7.6 Fundamental interactions
 7.7 Interactions and accelerations
 7.8 Nondissipative interactions
 7.9 Potential energy near Earth's surface
 7.10 Dissipative interactions

71 The effects of interactions
7.2 Potential energy
7.3 Energy dissipation
7.4 Source energy
7.5 Interaction range
7.6 Fundamental interactions

Interactions and acceler
7.8 Nondissipative interactic
7.9 Potential energy near Ea 7.10 Dissipative interactions

potential energy

potential energy

(2) content

potential energy

reversible
©

state change

reversible and irreversible state changes

(a) Coherent deformation: reversible

(b) Incoherent deformation: irreversible

classification of energy

(2) content

energy conversions

Friction dissipates mechanical energy

When source energy is converted to mechanical energy, some dissipates irreversibly to thermal energy

DISSIPATIVE
(irreversible)

Source energy can be converted completely and irreversibly to thermal energy.

energy conversions

energy conversions

Force
8.1 Momentum and force
8.2 The reciprocity of forces
8.3 Identifying forces
8.4 Translational equilibrium
8.5 Free-body diagrams
8.6 Springs and tension
8.7 Equation of motion
8.8 Force of gravity
8.9 Hooke's law
8.10 Impulse
8.11 Systems of two interacting objects
8.11 Systems of two in eracting objects
8.12 Systems of many interact
(2) content

(1) architecture
(2) content

9.1 Force displacement
9.2 Positive and negative work
9.3 Energy diagrams
9.4 Choice of system
9.5 Work done on a single particle
9.6 Work den a many-particle system
9.6 Work done distributed forces
9.7 Variable
9.8 Power

energy diagram

energy diagram

We can represent the changes in energy by initial and final bar diagrams . .

(c) . . . or by a single energy diagram.

energy diagram

energy diagram

how much work is it to switch?

Thereman Lecurifs phylics

THE DEFINITIVEEDITION VOLUME

MATTER \& INTERACTIONS II MODERN MECHANICS

The Feyms IECTURES

TEE DEFINITIVEED

MATTER \& INT

MODERN M six ideas that shaped

The Ferm

 LECTURESTEE DEFIMITIVEED

FEYNMAN

PHYSICS

Unit N: The Laws of Physics
Are Universal

Thomas A.
Moore

1. Physics and measurement
2. Motion in one dimension
3. Vectors
4. Motion in two dimensions
5. The laws of motion
6. Circular motion
7. Work and kinetic energy
8. Potential energy and CoE
9. Momentum and collisions
10. Rotation about a fixed axis
11. Rolling motion and angular momentum
12. Static equilibrium and elasticity
13. Oscillatory motion
14. The law of gravity
15. Fluid mechanics
16. Wave motion
17. Sound waves
18. Superposition and standing waves
19. Foundations
20. Motion in one dimension
21. Acceleration
22. Momentum
23. Energy
24. Principle of relativity
25. Interactions
26. Force
27. Work
28. Motion in a plane
29. Motion in a circle
30. Torque
31. Gravity
32. Special Relativity
33. Periodic Motion
34. Waves in one dimension
35. Waves in 2 and 3 dimensions
36. Fluids
37. Physics and measurement
38. Motion in one dimension
39. Vectors
40. Motion in two dimensions
41. The laws of motion
42. Circular motion
43. Work and kinetic energy
44. Potential energy and CoE
45. Momentum and collisions
46. Rotation about a fixed axis
47. Rolling motion and angular momentum
48. Static equilibrium and elasticity
49. Oscillatory motion
50. The law of gravity
51. Fluid mechanics
52. Wave motion
53. Sound waves
54. Superposition and standing waves
55. Foundations
56. Motion in one dimension
57. Acceleration
58. Momentum
59. Energy
60. Principle of relativity
61. Interactions
62. Force
63. Work
64. Motion in a plane
65. Motion in a circle
66. Torque
67. Gravity
68. Special Relativity
69. Periodic Motion
70. Waves in one dimension
71. Waves in 2 and 3 dimensions
72. Fluids
73. Physics and measurement
74. Motion in one dimension
75. Vectors
76. Motion in two dimensions
77. The laws of motion
78. Circular motion
79. Work and kinetic energy
80. Potential energy and CoE
81. Momentum and collisions
82. Rotation about a fixed axis
83. Rolling motion and angular momentum
84. Static equilibrium and elasticity
85. Oscillatory motion
86. The law of gravity
87. Fluid mechanics
88. Wave motion
89. Sound waves
90. Superposition and standing waves
91. Foundations
92. Motion in one dimension
93. Acceleration
94. Momentum
95. Energy
96. Principle of relativity
97. Interactions
98. Force
99. Work
100. Motion in a plane
101. Motion in a circle
102. Torque
103. Gravity
104. Special Relativity
105. Periodic Motion
106. Waves in one dimension
107. Waves in 2 and 3 dimensions
108. Fluids
109. Physics and measurement
110. Motion in one dimension
111. Vectors
112. Motion in two dimensions
113. The laws of motion
114. Circular motion
115. Work and kinetic energy
116. Potential energy and CoE
117. Momentum and collisions
118. Rotation about a fixed axis
119. Rolling motion and angular momentum
120. Static equilibrium and elasticity
121. Oscillatory motion
122. The law of gravity
123. Fluid mechanics
124. Wave motion
125. Sound waves
126. Superposition and standing waves
127. Foundations
128. Motion in one dimension
129. Acceleration
130. Momentum
131. Energy
132. Principle of relativity
133. Interactions
134. Force
135. Work
136. Motion in a plane
137. Motion in a circle
138. Torque
139. Gravity
140. Special Relativity
141. Periodic Motion
142. Waves in one dimension
143. Waves in 2 and 3 dimensions
144. Fluids
145. Physics and measurement
146. Motion in one dimension
147. Vectors
148. Motion in two dimensions
149. The laws of motion
150. Circular motion
151. Work and kinetic energy
152. Potential energy and CoE
153. Momentum and collisions
154. Rotation about a fixed axis
155. Rolling motion and angular momentum
156. Static equilibrium and elasticity
157. Oscillatory motion
158. The law of gravity
159. Fluid mechanics
160. Wave motion
161. Sound waves
162. Superposition and standing waves
163. Foundations
164. Motion in one dimension
165. Acceleration
166. Momentum
167. Energy
168. Principle of relativity
169. Interactions
170. Force
171. Work
172. Motion in a plane
173. Motion in a circle
174. Torque
175. Gravity
176. Special Relativity
177. Periodic Motion
178. Waves in one dimension
179. Waves in 2 and 3 dimensions
180. Fluids
181. Physics and measurement
182. Motion in one dimension
183. Vectors
184. Motion in two dimensions
185. The laws of motion
186. Circular motion
187. Work and kinetic energy
188. Potential energy and CoE
189. Momentum and collisions
190. Rotation about a fixed axis
191. Rolling motion and angular momentum
192. Static equilibrium and elasticity
193. Oscillatory motion
194. The law of gravity
195. Fluid mechanics
196. Wave motion
197. Sound waves
198. Superposition and standing waves
199. Foundations
200. Motion in one dimension
201. Acceleration
202. Momentum
203. Energy
204. Principle of relativity
205. Interactions
206. Force
207. Work

conservation

10. Motion in a plane
11. Motion in a circle
12. Torque
13. Gravity
14. Special Relativity
15. Periodic Motion
16. Waves in one dimension
17. Waves in 2 and 3 dimensions
18. Fluids
19. Physics and measurement
20. Motion in one dimension
21. Vectors
22. Motion in two dimensions
23. The laws of motion
24. Circular motion
25. Work and kinetic energy
26. Potential energy and CoE
27. Momentum and collisions
28. Rotation about a fixed axis
29. Rolling motion and angular momentum
30. Static equilibrium and elasticity
31. Oscillatory motion
32. The law of gravity
33. Fluid mechanics
34. Wave motion
35. Sound waves
36. Superposition and standing waves
37. Foundations
38. Motion in one dimension
39. Acceleration
40. Momentum
41. Energy
42. Principle of relativity
43. Interactions
44. Force
45. Work
46. Motion in a plane
47. Motion in a circle
48. Torque
rotation
49. Gravity
50. Special Relativity
51. Periodic Motion
52. Waves in one dimension
53. Waves in 2 and 3 dimensions
54. Fluids
55. Physics and measurement
56. Motion in one dimension
57. Vectors
58. Motion in two dimensions
59. The laws of motion
60. Circular motion
61. Work and kinetic energy
62. Potential energy and CoE
63. Momentum and collisions
64. Rotation about a fixed axis
65. Rolling motion and angular momentum
66. Static equilibrium and elasticity
67. Oscillatory motion
68. The law of gravity
69. Fluid mechanics
70. Wave motion
71. Sound waves
72. Superposition and standing waves
73. Foundations
74. Motion in one dimension
75. Acceleration
76. Momentum
77. Energy
78. Principle of relativity
79. Interactions
80. Force
81. Work
82. Motion in a plane
83. Motion in a circle
84. Torque
85. Gravity
86. Special Relativity
87. Periodic Motion
88. Waves in one dimension
89. Waves in 2 and 3 dimensions
90. Fluids

mostly minor rearrangements!

(1) architecture
(2) content

easily custom tailored

Table 1 Scheduling matrix

Topic	Chapters	Can be inserted after chapter...	Chapters that can be omitted without affecting continuity
Mechanics	$1-14$		$6,13-14$
Waves	$15-17$	12	$16-17$
Fluids	18	9	10
Thermal Physics	$19-21$	$22-30$	12 (but 17 is needed for 29-30)
Electricity \& Magnetism	$31-32$	26 (but 30 is needed for 32$)$	21
Circuits	17	$29-30$	
Optics	$33-34$		32

1) architecture

(2) content

Emmy Noether

(1) architecture
(2) content

Emmy Noether

(1) architecture
(2) content

Emmy Noether

(1) architecture
(2) content

Noether inverted

(1) architecture
(2) content

aesthetically more appealing

(1) architecture
(2) content

where is modern physics?

1. Foundatio
2. Motion in one
3. Acceleration
4. Momentum
5. Energy
6. Principle of relativity
7. Interactions
8. Force
9. Work
10. Motion in a plane
11. Motion in a circle
12. Torque
13. Gravity
14. Special Relativity
15. Periodic Motion
16. Waves in one dimension
17. Waves in 2 and 3 dimensions
18. Fluids
19. Entropy
20. Energy transferred thermally
21. Degradation of energy
22. Electric interactions
23. The electric field
24. Gauss's law
25. Work and energy in electrostatics
26. Charge separation and storage
27. Magnetic interactions
28. Magnetic fields of charged particles in motion
29. Changing magnetic fields
30. Changing electric fields
31. Electric circuits
32. Electronics
33. Ray optics
34. Wave and particle optics

1. Foundatior universality; particle interactions

5. Energy
6. Principle of rel sity
7. Interactions
8. Force
9. Work
10. Motion in a plane
11. Motion in a circle
12. Torque
13. Gravity
14. Special Relativity
15. Periodic Motion
16. Waves in one dimension
17. Waves in 2 and 3 dimensions
18. Fluids
19. Entropy
20. Energy transferred thermally
21. Degradation of energy
22. Electric interactions
23. The electric field
24. Gauss's law
25. Work and energy in electrostatics
26. Charge separation and storage
27. Magnetic interactions
28. Magnetic fields of charged particles in motion
29. Changing magnetic fields
30. Changing electric fields
31. Electric circuits
32. Electronics
33. Ray optics
34. Wave and particle optics
35. Foundations
36. Motion in one dimension
37. Acceleration
38. Momentum
39. Energy
40. Principle of relativity
41. Interactions
42. Force
43. Work
44. Motion in a plane
45. Motion in a circle
46. Torque
47. Gravity
48. Special Relativity
49. Periodic Motion
50. Waves in one dimension
51. Waves in 2 and 3 dimensions
52. Fluids
53. Entropy
54. Energy transferred thermally
55. Degradation of energy
56. Electric interactions
57. The electric field

concepts of general relativity

4. Gauss's law

Work and energy in electrostatics
Charge separation and storage
27. Magnetic interactions
28. Magnetic fields of charged particles in motion
29. Changing magnetic fields
30. Changing electric fields
31. Electric circuits
32. Electronics
33. Ray optics
34. Wave and particle optics

1. Foundations
2. Motion in one dimension
3. Acceleration
4. Momentum
5. Energy
6. Principle of relativity
7. Interactions
8. Force
9. Work
10. Motion in a plane
11. Motion in a circle
12. Torque
13. Gravity
14. Special Relativity
15. Periodic Motion
16. Waves in one dimension
17. Waves in 2 and 3 dimensions
18. Fluids
19. Entropy
20. Energy transferred thermally
21. Degradation of energy
22. Electric interactions
23. The electric field
24. Gauss's law
25. Work and energy in electrostatics Charge separation and storage Magnetic interactions
26. Magnetic fields of charged particles in motion
27. Changing magnetic fields
28. Changing electric fields
29. Electric circuits
30. Electronics
31. Ray optics
32. Wave and particle optics
33. Foundations
34. Motion in one dimension
35. Acceleration
36. Momentum
37. Energy
38. Principle of relativity
39. Interactions
40. Force
41. Work
42. Motion in a plane
43. Motion in a circle
44. Torque
45. Gravity
46. Special Relativity
47. Periodic Motion
48. Waves in one dimension
49. Waves in 2 and 3 dimensions
50. Fluids
51. Entropy
52. Energy transfeı
d thermally
53. Degradation of
54. Electric inte
55. The elect
56. Gauss's la
57. Work and
58. Charge separatr
59. Magnetic interactions
60. Magnetic fields of charged particles in motion
61. Changing magnetic fields
62. Changing electric fields
63. Electric circuits
64. Electronics
65. Ray optics
66. Wave and particle optics
67. Foundations
68. Motion in one dimension
69. Acceleration
70. Momentum
71. Energy
72. Principle of relativity
73. Interactions
74. Force
75. Work
76. Motion in a plane
77. Motion in a circle
78. Torque
79. Gravity
80. Special Relativity
81. Periodic Motion
82. Waves in one dimension
83. Waves in 2 and 3 dimensions
84. Fluids
85. Entropy
86. Energy transfer
87. Degradatic
88. Electric ir
89. The elect
90. Gauss's law
91. Work and ener
92. Charge separat / and storage
93. Magnetic interactions
94. Magnetic fields of charged particles in motion
95. Changing magnetic fields
96. Changing electric fields
97. Electric circuits
98. Electronics
99. Ray optics
100. Wave and particle optics
101. Foundations
102. Motion in one dimension
103. Acceleration
104. Momentum
105. Energy
106. Principle of relativity
107. Interactions
108. Force
109. Work
110. Motion in a plane
111. Motion in a circle
112. Torque
113. Gravity
114. Special Relativity
115. Periodic Motion
116. Waves in one dimension
117. Waves in 2 and 3 dimensions
118. Fluids
119. Entropy
120. Energy transferred thermally
121. Degradation of energy
122. Electric interactions
123. The electric field
124. Gauss's law
125. Work and enera
126. Charge sep semiconductors
127. Magnetic
128. Magnetic
129. Changing
130. Changing elect
131. Electric circuits
132. Electronics
133. Ray optics
134. Wave and particle optics
135. Foundations
136. Motion in one dimension
137. Acceleration
138. Momentum
139. Energy
140. Principle of relativity
141. Interactions
142. Force
143. Work
144. Motion in a plane
145. Motion in a circle
146. Torque
147. Gravity
148. Special Relativity
149. Periodic Motion
150. Waves in one dimension
151. Waves in 2 and 3 dimensions
152. Fluids
153. Entropy
154. Energy transferred thermally
155. Degradation of energy
156. Electric interactions
157. The electric field
158. Gauss's law
159. Work and energy in electrostatics
160. Charge separation and storage
161. Magnetic inter
162. Magnetic f

163. Electric circ
164. Electronics
165. Ray optics
166. Wave and particle optics

PRINCIPLES \& PRACTICE OF
PHYSICS

ERIC MAZUR
${ }^{\text {PM }}$ PYSICS
(2) content
(3) results

(1) architecture
(2) content
(3) results

AP50: no lectures, students read book only

AP50: no lectures, students read book only

(1) architecture
(2) content
(3) results

AP50: no lectures, students read book only

(1) architecture
(2) content
(3) results

AP50: no lectures, students read book only

(1) architecture
(2) content
(3) results

AP50: no lectures, students read book only

largest conceptual gain in any course past 6 yrs!

AP50: no lectures, students read book only

(1) architecture
(2) content
(3) results

AP50: no lectures, students read book only

Practice
as good as when I do my best teaching!

AP50: no lectures, students read book only

University of Arkansas

course revision based on

preliminary version of manuscript:

University of Arkansas

course revision based on

preliminary version of manuscript:

 normalized FCI gain DOUBLED(1) architecture
(2) content
(3) results

For a copy of these slides:
mazur@harvard.edu

Textbook info/copies:
pearsonhighered.com/mazur1e

Follow me!

