Question design workshop

Julie Schell Sr. Educational Research Associate Mazur Group, Harvard University

Please go to <u>lcatalytics.com</u> Sign in with your username and password

Click Student View

Join session 832384

Select "I can't find my seat"

Wait for questions

Workshop goals

- -Consider the anatomy of a question
- -Practice answering different question types
- -Conduct contrasting case analyses to identify the key elements of effective questions and practices for developing them

Part 1: What makes a question?

Question Anatomy

Item

Imagine a metal plate with a hole in it.

If you heat it uniformly what happens to diameter of hole?

A. increases

B. stays the same

C. decreases

Question Anatomy

A. increases

B. stays the same

C. decreases

Question Anatomy

Constructed response

Imagine a metal plate with a hole in it.

If you heat it uniformly what happens to diameter of hole?

Modified multiple choice

Imagine a metal plate with a hole in it.

If you heat it uniformly what happens to diameter of hole?

Modified multiple choice

Imagine a metal plate with a hole in it.

If you heat it uniformly what happens to diameter of hole?

A. increases

B. stays the same

C. decreases

Response formats

- •Multiple choice response: Best when the universe of responses is known
- Constructed response: Best when it is hard to anticipate student responses, and when a more authentic task is desired
- •Modified multiple choice: Formative versus summative assessment

Part 3: Effective question cases

Case A

What is the shortest distance between first and third base?

Case A

$$3^{2} + 4^{2} = c^{2}$$

 $9 + 16 = c^{2}$
 $25 = c^{2}$
 $\sqrt{25} = c$
 $5 = c$

Case A: Effective practice

Pose questions that put students in situations where there are unknowns.

Case B

What is the shortest number of steps required to replicate the order of disks on pole 1 on pole 2, following these rules:

- 1. You can only move one disk at a time
- 2. You can never put a bigger disk on top of a smaller disks

a. 3

b. 5

c. 7

d. 9

a. 3

b. 5

c. 7

d. 9

Case B: Effective practice

Pose questions that are at a level of desirable difficulty

Case C

What happens when you heat metals up?

A. increases

B. stays the same

C. decreases

Versus

What happens when you heat a metal plate with a hole in it?

A. increases

B. stays the same

C. decreases

Case C: Effective Practice

Pose questions that

- 1. elicit student misconceptions (use real distractors)
- 2. require students to apply versus retrieve knowledge
- 3. direct students' thinking to the underlying, key concepts

Tips for developing effective questions

- give students practice with authentic situations (not knowing all the variables)
- pose questions at a range of desirable difficulty
- elicit student misconceptions or difficulties about subject matter
- •give them practice applying knowledge in various contexts
- direct student thinking to the precise point you want them to remember or learn