D-LAB, MIT, 2014 . LAURA TUCKER.

PEER INSTRUCTION

YOUR PLANS?

WHAT DO YOU WANT STUDENTS TO TAKE FROM YOUR COURSE?

WHAT DO YOU WANT STUDENTS TO TAKE FROM YOUR COURSE?

WHAT DO YOU WANT STUDENTS TO TAKE FROM YOUR COURSE?

CONTENT KNOWLEDGE

INSPIRATION

SKILLS

WHICH CAN THE BEST LECTURE ACHIEVE?

CONTENT KNOWLEDGE INSPIRATION

SKILLS

HOW EFFECTIVELY DOES LECTURE TEACH CONTENT KNOWLEDGE?

YOUTUBE: "FIVE MINUTE UNIVERSITY"

WHICH CAN THE BEST LECTURE ACHIEVE?

CONTENT KNOWLEDGE?

INSPIRATION

SKyLS

GOOD TARGET: 5-15 MINUTES OF INSTRUCTOR TALKING

1976, A. H. Johnstone and F. Percival observed students in over 90 lectures, with 12 different lecturers, recording breaks in student attention. They identified a general pattern of attention breaks: after three to five minutes of "settling down" at the start of class, one study found that "the next lapse of attention usually occurred some 10 to 18 minutes later, and as the lecture proceeded the attention span became shorter and often fell to three or four minutes towards the end of a standard lecture" (p. 49-50). These findings, except for the "settling period," seem to be confirmed by Ralph A. Burns 1985 study. Burns asked students to write summaries of presentations and tallied the bits of information reported by the "half-minute segment of the presentation" in which they occurred. He reports that students recalled the most information from the first 5 minutes of the presentation. "Impact declined, but was relatively constant for the next two 5minute portions, and dropped to the lowest level during the 15 - to 20 -minute interval" (Burns, 1985). Both of these studies note the severe lapse of attention 15 to 20 minutes into a lecture. P. J. Fen sham explains this phenomenon, "During

GOOD TARGET: 5-15 MINUTES OF INSTRUCTOR TALKING

1976, A. H. Johnstone and F. Percival observed students in over 90 lectures, with 12 different lecturers, recording breaks in student attention. They identified a general pattern of attention breaks: after three to five minutes of "settling down" at the start of class, one study found that "the next lapse of attention usually occurred some 10 to 18 minutes later, and as the lecture proceeded the attention span became shorter and often fell to three or four minutes towards the end of a standard lecture" (p. 49-50). These findings, except for the "settling period," seem to be confirmed by Ralph A. Burns 1985 study. Burns asked students to write summaries of presentations and tallied the bits of information reported by the "half-minute segment of the presentation" in which they occurred. He reports that students recalled the most information from the first 5 minutes of the presentation. "Impact declined, but was relatively constant for the next two 5minute portions, and dropped to the lowest level during the 15 - to 20 -minute interval" (Burns, 1985). Both of these studies note the severe lapse of attention 15 to 20 minutes into a lecture. P. J. Fen sham explains this phenomenon, "During

GOOD TARGET: 5-15 MINUTES OF INSTRUCTOR TALKING

1976, A. H. Johnstone and F. Percival observed students in over 90 lectures, with 12 different lecturers, recording breaks in student attention. They identified a general pattern of attention breaks: after three to five minutes of "settling down" at the start of class, one study found that "the next lapse of attention usually occurred some 10 to 18 minutes later, and as the lecture proceeded the attention span became shorter and often fell to three or four minutes towards the end of a standard lecture" (p. 49-50). These findings, except for the "settling period," seem to be confirmed by Ralph A. Burns 1985 study. Burns asked students to write summaries of presentations and tallied the bits of information reported by the "half-minute segment of the presentation" in which they occurred. He reports that students recalled the most information from the first 5 minutes of the presentation. "Impact declined, but was relatively constant for the next two 5minute portions, and dropped to the lowest level during the 15- to 20-minute interval" (Burns, 1985). Both of these studies note the severe lapse of attention 15 to 20 minutes into a lecture. P. J. Fen sham explains this phenomenon, "During

IF NOT LECTURE, THEN WHAT?

IF NOT LECTURE, THEN WHAT?

1. What do we do in class?
2. How will information transfer happen?

PEER INSTRUCTION

BRIEF PRESENTATION

PEER INSTRUCTION

BRIEF PRESENTATION
QUESTION
VOTE

PEER INSTRUCTION

BRIEF PRESENTATION
QUESTION
VOTE
IF 30-70\% CORRECT:

PEER INSTRUCTION

BRIEF PRESENTATION
QUESTION
VOTE
IF 30-70\% CORRECT:
DISCUSS

PEER INSTRUCTION

BRIEF PRESENTATION

QUESTION
VOTE
IF 30-70\% CORRECT:
DISCUSS
RE-VOTE

PEER INSTRUCTION

BRIEF PRESENTATION

 QUESTIONVOTE
IF 30-70\% CORRECT:

DISCUSS
RE-VOTE
BRIEF EXPLANATION

PEER INSTRUCTION

BRIEF PRESENTATION

QUESTION
VOTE
IF MORE THAN 70\% CORRECT:
DISUUSS
RE-VOTE
BRIEF EXPLANATION

PEER INSTRUCTION

BRIEF PRESENTATION
QUESTION
VOTE

PEER INSTRUCTION

LET'S TRY IT!

LET'S TRY IT!

WHEN METALS HEAT UP, THEY EXPAND

QUESTIONS?

M.SOCRATIVE.COM

WHAT HAPPENS TO THE DIAMETER OF THE HOLE AS THE PLATE IS HEATED UNIFORMLY?
a. increases
b. decreases
c. stays the same

METAL PLATE WITH A HOLE IN THE CENTER

WHY PEER INSTRUCTION WORKS INSPIRATION

SKILLS

CONTENT KNOWLEDGE

WHY PEER INSTRUCTION WORKS
INSPIRATION

- you're invested

SKILLS

CONTENT KNOWLEDGE

WHY PEER INSTRUCTION WORKS
INSPIRATION

- you're invested

SKILLS

- you're applying knowledge

CONTENT KNOWLEDGE

WHAT HAPPENS TO THE DIAMETER OF THE HOLE AS THE PLATE IS HEATED UNIFORMLY?

WHAT HAPPENS TO THE DIAMETER OF THE HOLE AS THE PLATE IS HEATED UNIFORMLY?

Abstract

$\bullet \bullet ~$ -••• -••••••••••••••••••••••••• -•• -••• -••• -•••••••••••••••••••••••••••••・ー・•••••••••• -••• -•• -•• -••• -•• $\bullet \bullet \bullet$ -•• -•••••••••••••••••••••••••••••••••••••• • •

WHAT HAPPENS TO THE DIAMETER OF THE HOLE AS THE PLATE IS HEATED UNIFORMLY?

WHAT HAPPENS TO THE DIAMETER OF THE HOLE AS THE PLATE IS HEATED UNIFORMLY?

WHAT HAPPENS TO THE DIAMETER OF THE HOLE AS THE PLATE IS HEATED UNIFORMLY?

PEER INSTRUCTION WORKS!

號
PEER
INSTRUCTION

PEER INSTRUCTION WORKS!

PEER
INSTRUCTION
\square LECTURE

WHY PEER INSTRUCTION WORKS
INSPIRATION

- you're invested
- you're getting feedback

SKILLS

- you're

CONTENT KNOWLEDGE

WHY PEER INSTRUCTION WORKS
INSPIRATION

- you're
- you're getting

SKILLS

- you're

CONTENT KNOWLEDGE

- you're getting to elicit, confront, resolve

WHY PEER INSTRUCTION WORKS: ELICIT, CONFRONT, RESOLVE

WHY PEER INSTRUCTION WORKS
INSPIRATION

- you're
- you're getting

SKILLS

- you're

CONTENT KNOWLEDGE

- you're getting to elicit, confront, resolve
- you're being tested

WHY PEER INSTRUCTION WORKS: TESTING

WHY PEER INSTRUCTION WORKS: TESTING

WHY PEER INSTRUCTION WORKS: TESTING

WHY PEER INSTRUCTION WORKS:

 TESTING

WHAT QUESTIONS DO I ASK?

CURRICULUM

1.
2.
3.

CURRICULUM: BACKWARD DESIGN

Merrill Education/ASCD College Textbook Series

$$
\begin{gathered}
\text { UNDERSTANDING } \\
\text { by DESIGN }
\end{gathered}
$$

CURRICULUM: BACKWARD DESIGN

Merrill Education/ASCD College Textbook Series

Expanded 2nd Edition
UNDERSTANDING by DESIGN

BY
LEARNING
GOALS

NOT
CONTENT

CURRICULUM: BACKWARD DESIGN

Merrill Education/ASCD College Textbook Series

Expanded 2nd Edition
UNDERSTANDING by DESIGN

ASSIGNMENTS

ACTIVITIES

ASSESSMENT

ASPECTS OF CURRICULUM DESIGN

1. backward design

LET'S DO ANOTHER QUESTION

WHAT IS -2-3? (SUBTRACT 3 FROM -2)
A. 1
B. -1
C. 5
D. -5
E. 6

WHAT IS -2-3? (SUBTRACT 3 FROM -2)
A. 1
B. -1
C. 5
D. -5
E. 6

ASPECTS OF CURRICULUM DESIGN

1. backward design

2. find out what's hard, but achievable

WHICH OF THE FOLLOWING AIRLINES TRIES TO SAVE FUEL BY SUGGESTING THAT ITS PASSENGERS USE THE BATHROOM BEFORE BOARDING?
A. Aeroflot
B. All Nippon
C. Delta
D. Lufthansa
E. Are you kidding me? None of the above.

WHICH OF THE FOLLOWING AIRLINES TRIES TO SAVE FUEL BY SUGGESTING THAT ITS PASSENGERS USE THE BATHROOM BEFORE BOARDING?

A. Aeroflot

B. All Nippon
C. Delta How were your discussions?
D. Lufthansa
E. Are you kidding me? None of the above.

WHICH OF THE FOLLOWING AIRLINES TRIES TO SAVE FUEL BY SUGGESTING THAT ITS PASSENGERS USE THE BATHROOM BEFORE BOARDING?
A. Aeroflot
B. All Nippon
C. Delta
D. Lufthansa
E. Are you kidding me? None of the above.

ASPECTS OF CURRICULUM DESIGN

1. backward design
2. find out what's hard, but achievable
3. elicit, confront, resolve

ASPECTS OF CURRICULUM DESIGN

1. backward design
2. find out what's hard, but achievable
3. elicit, confront, resolve
4. assess

HIGH-TECH IMPLEMENTATIONS

HIGH-TECH IMPLEMENTATIONS

www.socrative.com

$\Leftrightarrow \nabla$
Student Log In
Teacher Log In
Teacher SIgn Up
socrative

Home How it Works Contact Us Support Materials

Engage the class

Socrative is a smart student response system that empowers teachers to engage their classrooms through a series of educational exercises and games via smartphones, laptops, and tablets. Watch the video | Learn more

```
Get started now!
```

I Like 5,053 people like this. Be the first 5,053 people lise
of your friends.

HIGH-TECH IMPLEMENTATIONS

learning catalytics

Product Tour Stories Pricing About Us

A "bring your own device" student engagement, assessment, and classroom intelligence system.

- Instructors: Get started now

\bigcirc

HIGH-TECH IMPLEMENTATIONS

LOW-TECH IMPLEMENTATION

http://bit.ly/1fv3bDP

LOW-TECH IMPLEMENTATION

SUMMARY SO FAR

- Limit lecture. 5-15 minutes.
- Use Peer Instruction during class
- Choose or write ConcepTests that
- are backward designed
- focus on what's hard, but achievable
- elicit, confront, resolve
- Go high-tech or low-tech

PEER INSTRUCTION AROUND THE

 WORLD

www.peerinstruction.net

Peerinstruction.net
 CONNECT. SHARE. LEARN.

Member Profile

SEARCH BY DISCIPLINE AND LOCATION

Peerinstruction.net
 CONNECT. SHARE. LEARN.

```
Member Profile
```


P1 Momber since: 08/05/2012
Course or Subject Area: Mechanics Electromagnetism
[3]

Eric Mazur

Show Eric's ConcepTests on Learning
Catalytics
What should the PI community know about me?
Physicist, educator, author, lecturer, Harvard professor, founder SiOnyx \& Learning Catalytics, developer of Peer Instruction, early adopter of new technologies

Other Information:
I teach:
troductory Undergraduates Intermediate Undergraduates Faculty (e.g. Workshops)
Other Audiences
Primarily research, some instruction, some admin
Small (1-25)
Medium (26-75)
Large (76-200)
Extra-Large (201-500)
Mega (500+)

CHECK OUT THE BLOG FOR FAQ

תאת Turn to Your Neighbor

Home

How do I get my students to prepare before coming to a flipped class?

April 20, 2012 • Best Practices, ConcepTests, Flipped classroom, Implementation, Just-in-TimeTeaching, Peer Instruction

F Print Post

Emal Tweet

Authors

Julie Schell

In 2 wildly popular blog posts 1 and 2 on the flipped classroom, "notable advocates of the flipped classroom" clarify what is meant by the term. They include Jonathan Bergmann and Aaron Sams, who are credited with developing the most prevalent implementation of the flip. In the first post, the 8 advocates write: "In most Flipped Classrooms, there is an active and intentional transfer of some of the information delivery to outside of the classroom with the goal of freeing up time to make better use of the face-to-face interaction in school."

The eight flipped classroom gurus also write, "This can look very different from classroom to classroom and we recognize no two Flipped Classrooms look exactly the same, just as no two traditional classrooms look alike. The Flipped Classroom is a pedagogy-first approach that strives to meet the needs of the learners in our individual schools and communities. It is much more an ideology than it is a specific methodology...there is no prescribed set of rules to follow or model to fit...Practitioners of the various flipped classroom models are constantly tweaking, changing, rejecting, adding to, and generally trying to improve the model through direct experience with how effective it is for kids."

We want to be clear, for ourselves and our readers, about what those most famous for the flip

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS

1. in-class quizzes

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS: IN-CLASS QUIZZES

Which of the following topics were not part of last night's reading?

- momentum
- energy
- radiation
- Kelvin

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS

1. in-class quizzes
2. JiTT

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS: JITT

READING/COVERAGE

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS: JITT

READING/COVERAGE

ONLINE ASSIGNMENT:
2 CONCEPTUAL QUESTIONS
1 FEEDBACK QUESTION

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS: JITT

READING/COVERAGE
ONLINE ASSIGNMENT:
2 CONCEPTUAL QUESTIONS
1 FEEDBACK QUESTION
WHAT SINGLE POINT IN THE MATERIAL WAS MOST CHALLENGING?

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS: JITT

READING/COVERAGE

ONLINE ASSIGNMENT:
2 CONCEPTUAL QUESTIONS
1 FEEDBACK QUESTION
WHAT SINGLE POINT IN THE MATERIAL WAS MOST CHALLENGING?

REVIEW FEEDBACK

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS: JITT

READING/COVERAGE
ONLINE ASSIGNMENT:
2 CONCEPTUAL QUESTIONS
1 FEEDBACK QUESTION
WHAT SINGLE POINT IN THE MATERIAL WAS MOST CHALLENGING?

REVIEW FEEDBACK
ADDRESS DIFFICULTIES IN CLASS

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS

1. in-class quizzes
2. JiTT
3. homework: one-paragraph summary of main points

ENCOURAGE INFORMATION TRANSFER BEFORE CLASS

1. in-class quizzes
2. JiTT
3. homework: one-paragraph summary of main points
4. discussion forum

SUMMARY

- Limit lecture. 5-15 minutes.
- Use Peer Instruction during class
- Choose or write ConcepTests that
- are backward designed
- focus on what's hard, but achievable
- elicit, confront, resolve
- Go high-tech or low-tech
- Encourage information transfer before class

THANK YOU! QUESTIONS?

D-LAB, MIT, 2014. LAURA TUCKER.
PEER INSTRUCTION

IMAGE CREDITS

- http://fc01.deviantart.net/fs71/i/2012/054/8/9/ reach for the stars by pridescrossing-d4qp4co.jpg
- http://smithsystem.com/wp-content/uploads/2012/06/classrooms.jpeg
- http://www.hobomom.com/wp-content/uploads/2012/05/WrongFeet.jpg

CITATION CREDITS

- youtube: "five minute university"

- Limit lecturing time. Middendorf, J., \& Kalish, A. (1996). The "change-up" in lectures. In Natl. Teach. Learn. Forum (Vol. 5, pp. 1-5). Wiley Online Library. Retrieved from http:// onlinelibrary.wiley.com/doi/10.1002/ntlf.10026/abstract (and references therein)
- Elicit, confront, resolve. McDermott, L. C., Shaffer, P. S., \& Constantinou, C. P. (2000). Preparing teachers to teach physics and physical science by inquiry. Physics Education, 35(6), 411-416.
- Testing effects. Roediger, H. L., \& Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences, 15(1), 20-27. doi:10.1016/j.tics.2010.09.003 (and references therein
- http://www.amazon.com/Understanding-Design-Expanded-2nd-Edition/dp/0131950843

