Interactive Learning: Technology in the Classrocind

Interactive Learning: Technology in the Classroofna

www.TurningTechnologies.com

www.TurningTechnologies.com

www.TurningTechnologies.com

Think of something you are good at

Think of something you are good at

How did you become good at this?

Became good at it by:

1. trial and error
2. lectures
3. practicing
4. apprenticeship
5. other

(1) lecture

(1) lecture
(2) PI
(3) PI 2.0

(1) lecture
(2) PI
(3) PI 2.0

What happens in a leature?

(1) lecture

(1) lecture

some people talk in their sleep

(1) lecture

some people talk in their sleep

lecturers talk while other people are sleeping
(Albert Camus)
(1) lecture

(1) lecture

(1) lecture

(1) lecture

(1) lecture

(1) lecture

not transfer but assimilation of information is key

(1) lecture

(1) lecture
 (2) PI

1. transfer of information
(1) lecture

1. transfer of information

2. assimilation of that information
(1) lecture
(2) PI
3. transfer of information (in class)

2. assimilation of that information

1. transfer of information (in class)

2. assimilation of that information (out of class)

Should focius nan THIS!

1. transfer of information $>$
2. assimilation of that information (out of class)
(1) lecture
(2) PI
3. transfer of information (in class)
4. assimilation of that information (out of class)
5. transfer of information (out of class)
6. assimilation of that information (in class)

1. transfer of information (out of class)

2. assimilation of that information (in class)
(2) PI
(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

1) education

1 lecture
(2) PI
(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI
thermal expansion
(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

(1) lecture
(2) PI

Consider a rectangular metal plate with a circular hole in it.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the how

1. increasencin IN.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.

Before I tell you the answer, let's analyze what happened.

Before I tell you the answer, let's analyze what happened.

You...

Before I tell you the answer, let's analyze what happened.

You...

1. made a commitment

Before I tell you the answer, let's analyze what happened.

You...

1. made a commitment
2. externalized your answer

Before I tell you the answer, let's analyze what happened.

You...

1. made a commitment
2. externalized your answer
3. moved from the answer/fact to reasoning

Before I tell you the answer, let's analyze what happened.

You...

1. made a commitment
2. externalized your answer
3. moved from the answer/fact to reasoning
4. became emotionally invested in the learning process

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.

Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.
consider atoms at rim of hole

(1) lecture
(2) PI
(1) lecture
(2) PI

1 lecture
(2) PI

Higher learmis

(1) lecture
(2) PI
Betters
(1) lecture
(2) PI

Join now!

PeerInstruction.net

1. Go to learningcatalytics.com/demo
2. Enter info, click "Start"
3. Join session 123456789
feedback
(1) lecture
(2) PI
(3) PI 2.0

1991
(1) lecture
(2) PI
(3) PI 2.0

(1) lecture

(2) PI
(3) PI 2.0

(1) lecture
(2) PI
(3) PI 2.0

ioclicker

(1) lecture
(2) PI
(3) PI 2.0

How do l...

- design good questions?
- optimize the discussions?
- manage time?
(14) $2 B$ B
iclicker
(1) lecture
(2) PI
(3) PI 2.0

learning|catalytics

learning|catalytics

Gary King

Brian Lukoff

Eric Mazur
(1) lecture
(2) PI
(3) PI 2.0

Use intelligent algorithms and data analytics to...

- improve questioning
- manage discussions
- facilitate time management/flow
par fixed rate
a. A 15 -year fised rate montgage at 12%
c. A 30 -year fixed fixed rate mortgage at 12%
quality of craftsmanship
a. High laboi costs
b. Decrea legal systems
a. \quad Lisgetsities $=$ Assets + Owners + Liabilities
b. Liants equity $=A$ Liabilities
c. \quad Revenule $=$ Assets - Liabilities

4. In order toprent
a. Powerpoits
b. Peoplesoft
d. Excel
5. In order to stant an aline b
b. Lower labor costs bigation costs
extensible plug-in architecture for question types
(1) lecture
(2) PI
(3) Pl 2.0

Sample question types:

- direction
- mathematical expression
- long answer, short answer, word cloud
- numerical, data collection
- ranking, priority
- region (select point on image)
- sketch, composite sketch
- highlight passage
-

(1) learningcatalytics.com/demo (2) enter info (3) ID 123456789

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help
optics i
\& Back to all lectures
\square Stop session
Review resultsSeat map
Show floating session ID
current session: 766079 | 69 students
(4)

Jump to \mathbf{V}	1	2	3	4

5 6 7 9 10
4. direction

Light enters horizontally into the combination of two perpendicular mirrors as shown below.

Indicate the direction of the incident light after it reflects off of both mirrors.

learning catalytics

learning catalytics

learning catalytics

learning catalytics

If $2 x-y=4$, then $x=$

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

This is a graph of $f(x)=\ln x$. Sketch a graph of the derivative $f^{\prime}(x)$.

learning catronics

learning catronics

learning catalytics

Courses Participate Review Classrooms Account
Institutions Purchases
transformations of parabolas
\& Back to all lectures
\square
4. sketch Sketch a graph of the function $(x)=(x-3)^{2}+2$.

* Stop delivery
Q Deliver again
Assign groups
Fill Show all results

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

transformations of parabolas

current session: 773885 | 9 students
© Back to all lectures
\square Stop session rill Review results
Show floating session ID 娄 Edit
Delete
4

$$
\begin{array}{|l|l|l|l|l|}
\hline \text { Jump to } \mathbf{V} & 1 & 2 & 3 & 4 \\
\hline
\end{array}
$$

4. sketch Sketch a graph of the function $(x)=(x-3)^{2}+2$.

* Stop delivery

Deliver again
Assign groups fill show all results

Round 1 \& Fill
9 responses

learning catalytics

Courses Participate Review Classrooms Account Institutions Purchases Users Tour Help

1. highlighting What do you see as the most important part of this Shakespeare \& Stop delivery Q Deliver again Assign groups Fhll Show all results
sonnet?
For shamel deny that thou bear'st love to any,
Who for thyself art so unprovident.
Grant, if thou wit, thou art beloved of many,
But that thou none lovest is most evident;
For thou art so possess'd with murderous hate
That 'gainst thyself thou stick'st not to conspire.
Seeking that beauteous roof to ruinate
Which to repair should be thy chief desire.
o, change thy thought, that I may change my mind!
Shall hate be fairer lodged than gentle love?
Be, as thy presence is, gracious and kind,
Or to thyself at least kind-hearted prove:
Make thee another self, for love of me,
That beauty still may live in thine or thee.

learning catalytics

(1) lecture
(2) PI
(3) PI 2.0

human interaction

(1) lecture
(2) PI
(3) Pl 2.0

(1) lecture

(4)

${ }^{-3}$
C. negarends on the path laken from $A 10 B$
(3) PI 2.0

(1) lecture

(2) PI
(3) PI 2.0

(1) lecture

 ϵ Back oall lacurres jump to 1223 . 1 c. 17% 0.0\%
E. 0%
0.0\%
E. 0%

$$
\begin{aligned}
& \text { positive } \\
& \text { zero } A \text { to } B \text {,hout the polarization induced in the sphere }
\end{aligned}
$$

negaive in taken from A to B
(3) Pl 2.0

(1) lecture

(2) PI
(3) PI 2.0

let system manage pairing

(1) lecture
(2) PI
(3) PI 2.0

Carrier
Leave session 87756
A postively charged rod is held near a neutral conducting sphere as ilusirrated below. A point positively charged particle speed. The mechanical A to point B al cons cause this motion is

Please discuss your response with:

- Brian Lukotl (to your left)
* Lam talking to this parsonipeople

(1) lecture

(2) PI
(3) PI 2.0

(1) lecture

(2) PI
(3) PI 2.0

in a lecture, students...

(1) lecture
(2) PI
(3) PI 2.0

in a lecture, students...

1. don't pay utmost attention
(1) lecture
(2) PI
(3) PI 2.0

in a lecture, students...

1. don't pay utmost attention
2. think they know it
in a lecture, students...
3. don't pay utmost attention
4. think they know it
5. are not confronted with misconceptions
in a lectu"e, sturnts...
6. don't pay utinost attention
7. think they knoy it 3 isf fionted with misconceptions
(1) lecture (2) PI
(3) PI 2.0

Education is not just about:

- transferring information
- getting students to do what we do

Education is not just about:

- transferring information
- getting students to do what we do
discovery \& exploration a must!
$\begin{array}{llll}\text { (1) lecture } & 2 \mathrm{PI} & 3 \text { Pl } 2.0\end{array}$
not technology, but pedagogy matters
(1) lecture
(2) PI
(3) PI 2.0

Learning Catalytics:

- implement proven, researched pedagogy

Learning Catalytics:

- implement proven, researched pedagogy
- use consumer devices
(1) lecture
(2) PI
(3) PI 2.0

Learning Catalytics:

- implement proven, researched pedagogy
- use consumer devices
- avoid pitfalls of MC assessment

Learning Catalytics:

- implement proven, researched pedagogy
- use consumer devices
- avoid pitfalls of MC assessment
- create a smart classroom anywhere

Funding:

National Science Foundation

for a copy of this presentation:

mazur.harvard.edu

learningcatalytics.com

Follow me!
eric_mazur

