Nonlinear optics at the nanoscale

Louisiana State University Baton Rouge, LA, 28 April 2014

Geoff Svacha

Rafael Gattass

Tobias Voss

Limin Tong

and also....

Chris Evans Jonathan Aschom Mengyan Shen Iva Maxwell James Carey Brian Tull Dr. Yuan Lu Dr. Richard Schalek Prof. Federico Capasso Prof. Cynthia Friend

Prof. Markus Pollnau (Twente) Xuewen Chen (Zhejiang) Zhanghua Han (Zhejiang) Dr. Sailing He (Zhejiang) Liu Liu (Zhejiang) Dr. Jingyi Lou (Zhejiang) Dr. Ray Mariella (LLNL) Prof. Frank Marlow (MPI Mühlheim) Prof. Sven Müller (Göttingen) Prof. Carsten Ronning (Göttingen)

Outline

supercontinuum generation

optical logic gates

Nature, 426, 816 (2003)

20 µm

Poynting vector profile for 200-nm nanowire

minimum bending radius: 5.6 μm

aerogel

420 nm

420 nm

Nanoletters, 5, 259 (2005)

in

out

Nanoletters, 5, 259 (2005)

Nanoletters, 5, 259 (2005)

Points to keep in mind:

- low-loss guiding
- convenient evanescent coupling
- attached to ordinary fiber

supercontinuum generation

optical logic gates

strong confinement \longrightarrow high intensity

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

mode field diameter (λ = 800 nm)

M.A. Foster, et al., Optics Express, 12, 2880 (2004)
nonlinear parameter

M.A. Foster, et al., Optics Express, 12, 2880 (2004)

dispersion important!

dispersion:

- modal dispersion
- material dispersion
- waveguide dispersion
- nonlinear dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

waveguide dispersion

nanowire continuum generation

energy in nanowire < 100 pJ!

- picojoule nonlinear optics
- optimum diameter for silica 500–600 nm
- low dispersion

• manipulating light at the nanoscale

supercontinuum generation

optical logic gates

output = transmitted cw + ccw power

input electric field amplitude E_{in}

coupling parameter: ρ

phase accumulation over path length of loop L

coupling parameter: ρ

output is sum of transmitted cw and ccw

Manipulating light at the nanoscale

accumulated phase:

$$\phi = k_o n$$

Manipulating light at the nanoscale

accumulated phase:

$$\phi = k_o n$$

nonlinear index:

$$n = n_o + n_2 I = n_o + n_2 \frac{P_i}{A_{eff}}$$
accumulated phase:

$$\phi = k_o n$$

nonlinear index:

$$n = n_o + n_2 I = n_o + n_2 \frac{P_i}{A_{eff}}$$

nonlinear parameter:

$$\gamma = n_2 \frac{k_o}{A_{eff}}$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

for 50-50 coupler:

$$\rho = 0.5$$

power-dependent output:

$$\frac{E_{out}^2}{E_{in}^2} = 1 - 2\rho(1-\rho)\{1 + \cos[(1-2\rho)\gamma P_o L]\}$$

for 50-50 coupler:

$$\rho = 0.5$$

no transmission:

$$\frac{E_{out}^2}{E_{in}^2} = 0$$

when $\rho \neq 0.5$:

for NAND gate need ouput with no input

for NAND gate need ouput with no input

for NAND gate need ouput with no input

universal NAND gate

universal NAND gate

universal NAND gate

mesoporous silica

Sagnac loop

output

mesoporous silica

Sagnac loop

very preliminary data

light-by-light modulation!

very preliminary data

very preliminary data

need a different approach!
need a different approach!

lithographic fabrication

need a different approach!

- lithographic fabrication
- greater index

need a different approach!

- lithographic fabrication
- greater index
- greater nonlinearity

TiO ₂ properties		
large nonlinearity	30x silica	
high index of refraction	2.4	
wide bandgap	3.1 eV	
low two-photon absorption	> 800 nm	
effective nonlinearity	50,000 W ⁻¹ km ⁻¹	

reactive sputtering of titanium with oxygen

begin with silicon wafer with thermal oxide

thermal oxide

Si wafer

deposit titania using reactive sputtering

titania film

thermal oxide

Si wafer

spin on e-beam resist

e-beam resist titania film thermal oxide

Si wafer

write pattern using e-beam

develop to remove exposed regions

deposit thin metal film

dissolve resist, lift off metal film

Si wafer

reactive ion etch through titania film

thermal oxide

Si wafer

Si wafer

the second second second second second

Summary

- several nanodevices demonstrated
- large γ permits miniature Sagnac loops
- switching energy ≈ 100 pJ

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur.harvard.edu

Coogle Search	I'm Fooling Luclau
---------------	--------------------

mazur			

Google Search	I'm Feeling Lucky

mazur	

mazur		

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur.harvard.edu

