Subcellular surgery and nanoneurosurgery

Vestern Washington University Bellingham, WA, May 13, 2014

Iva Maxwell

Sam Chung

Valeria Nuzzo

Alexander Heisterkamp

and also....

Nabiha Saklayen Sébastien Courvoisier

Dr. Eli Glezer Prof. Chris Schaffer Prof. Nozomi Nishimura Debayoti Datta Dr. Jonathan Ashcom Jeremy Hwang Dr. Nan Shen Roanna Ruiz Anja Schmalz Dr. Prakriti Tayalia

Prof. Donald Ingber (Harvard Medical School) Prof. Phil LeDuc (Carnegie Mellon University) Prof. Sanjay Kumar (UC Berkeley) Prof. Aravi Samuel (Harvard University) Prof. Jean Underwood (UMass Worcester) Prof. Daniel Needleman (Harvard University)

living systems require interdisciplinary tools

.

why use femtosecond pulses?

tissue is nearly transparent at 800 nm

fluorescent labeling helps reveal function

standard biochemical tools: species selective

• fs 'nanosurgery': site-specific

- subcellular surgery
- nanoneurosurgery

Ti: sapphire laser

Ti:sapphire lasers

pulse duration:	50 fs	repetition rate:	80 MHz
average power:	1 W	peak power:	10 ¹⁰ W
energy per pulse:	1 mJ	wavelength:	800 nm

• subcellular surgery

nanoneurosurgery

focus laser beam inside material

Opt. Lett. 21, 2023 (1996)

high intensity at focus...

... causes nonlinear ionization...

and 'microexplosion' causes microscopic damage...

SEM & AFM:

- 100-nm cavities
- little colateral damage

Dark-field scattering

block probe beam...

... bring in pump beam...

... damage scatters probe beam

vary numerical aperture

fit gives threshold intensity: $I_{th} = 2.5 \times 10^{17} \text{ W/m}^2$

vary material...

...threshold varies with band gap (but not much!)

• subcellular surgery

nanoneurosurgery

Q: can we ablate material on the subcellular scale?

Requirements:

- submicrometer precision (in bulk)
- no damage to neighboring structures
- independent of structure/organelle type

Cytoskeleton

- gives a cell its shape
- provides a scaffold for organelles
- responsible cell motion and attachment
- facilitates intracellular transport and signaling
- required for cell division

two components

actin fibers

microtubules

epi-fluorescence microscope

fluorescently label sample

UV illumination...

...causes fluorescence

irradiate with fs laser beam

examine resulting ablation

nucleus of fixed endothelial cell

white light microscopy

nucleus of fixed endothelial cell

fluorescence microscopy

irradiate with fs laser

fluorescence microscopy

irradiate with fs laser

fluorescence microscopy

bleaching or ablation?

TEM image

three regions of interaction

three regions of interaction

Definitive proof of ablation

- ablation width as small as 100 nm
- ablation threshold varies slightly
- ablation threshold 20% above bleaching threshold

Definitive proof of ablation

- ablation width as small as 100 nm
- ablation threshold varies slightly
- ablation threshold 20% above bleaching threshold

Q: subcellular surgery on live cells?

Q: can we probe the dynamics of the cytoskeleton?

YFP-labeled actin fiber network of a live cell

cut a single fiber bundle

cut a single fiber bundle

gap widens with time

retraction or depolymerization?

retraction or depolymerization?

retraction!

dynamics provides information on in vivo mechanics

overdamped spring:
$$\Delta L = L_{\infty}(1 - e^{-t/\tau}) + L_{o}$$

overdamped spring:
$$\Delta L = L_{\infty}(1 - e^{-t/\tau}) + L_{o}$$

L_{o} and τ independent of fiber width!

tension in actin filaments is generated by myosin motors

Y27: inhibits some myosin activity

ML7: direct inhibitor of myosin activity

femtosecond materials interactions

• subcellular surgery

nanoneurosurgery

Q: can we probe the neurological origins of behavior?

neuron basics

Caenorhabditis elegans

Juergen Berger & Ralph Sommer Max-Planck Institute for Developmental Biology

- simple model organism
- similarities to higher organisms
- genome fully sequenced
- easy to handle

- 80 µm x 1 mm
- about 1000 cells
- 302 neurons
- invariant wiring diagram
- neuronal system completely encodes behavior

Mapping behavior to neurons

Mapping behavior to neurons

- responsible for chemical sensing
- ciliary projections extend through skin
- one on each side

make ASH neurons express GFP

make ASH neurons express GFP

GFP: absorbs UV, emits green

AUA neurons

need exquisite precision!

DiO-stained bundle of dendrites

cut single dendrite in bundle (3 nJ)

no damange to neighboring dendrites

revive worm, reimage 1 day later

osmolarity assay

escape rate after 'mock' surgery

escape rate of ASH-lacking mutant

escape rate after ASH-ablation surgery

AFD neurons (temperature sensors)

Q: where does the ASH sense temperature?

microdroplet assay

microdroplet assay

microdroplet assay

surgery results in quantifiable behavior changes

before

after

temperature sensing occurs at tip of dendrite

Conclusion

great tool for manipulating the machinery of life

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur.harvard.edu

doogle search finn cening cucky

mazur			

Google Search	I'm Feeling Lucky
[(

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Funding:

Harvard Center for Imaging and Mesoscopic Structures National Science Foundation National Natural Science Foundation of China

for a copy of this presentation:

http://mazur.harvard.edu

