Polycrystalline Anatase Micro-Ring Resonators at Telecommunication Wavelengths

Orad Reshef¹, Katia Shtyrkova², Michael Moebius¹, Christopher Evans^{1,3}, Sarah Griesse-Nascimento¹, Erich Ippen², Eric Mazur¹

¹Harvard School of Engineering and Applied Sciences, Cambridge, MA

²Massachusetts Institute of Technology, Cambridge, MA

³Kavli Institute at Cornell University, Ithaca, NY

CLEO: Advanced Fabrication Methods San Jose, California June 09, 2014

Why anatase?

It is easy to deposit low-loss anatase TiO₂ thin films.

We have demonstrated integrated nonlinear optics using anatase.

Why micro-rings?

They help evaluate the quality of our fabrication.

They can be used to enhance nonlinear interactions.

Outline

Introduction to TiO₂ and anatase as a photonic platform

Fabrication process

Design parameters

Characterization of fabricated devices

Titanium dioxide

Titanium dioxide (TiO₂) is found in 3 naturally occurring phases:

Brookite

TiO₂ is inexpensive, abundant and non-toxic.

Anatase TiO₂ has desirable properties for integrated nonlinear optics in the visible regime.

Large refractive index: $2.4 @ \lambda = 1550 \text{ nm}$

Large nonlinear index: 1.8×10^{-15} cm²/W @ $\lambda = 1550$ nm

 $2.5 \times 10^{-15} \text{ cm}^2/\text{W} \text{ for SiN}$

Large transparency: > 400 nm

> 800 nm - no 2PA

> 1200 nm - no 3PA

How does this compare to other materials?

First, let's compare transparency:

Of the photonic materials that are transparent in the visible, TiO_2 has the largest linear and nonlinear indices.

third harmonic materials that are transparent in the visible, the largest linear indices.

Presentation of third harmonic generation in TiO₂ this week:

Katia Shtyrkova et al., "Third Harmonic Generation in Polycrystalline Anatase Titanium Dioxide Nanowaveguides"

Wednesday June 11 5:45 PM Meeting Room 211 B/D

Micro-ring resonators have been previously studied in amorphous TiO₂.

$$Q = 2.2 \times 10^4 \text{ at } \lambda = 633 \text{ nm}$$

J. T. Choy et al., *Optics Letters* 37, 539 (2012)

Fabrication

We use standard lithographic techniques to structure thin films into nanowaveguides.

J. D. B. Bradley et al., *Optics Express* 20, 23821 (2012)

Raman spectroscopy confirms the deposition of anatase.

J. D. B. Bradley et al., *Optics Express* 20, 23821 (2012)

The rough surface contributes to propagation losses.

J. D. B. Bradley et al., *Optics Express* 20, 23821 (2012)

Design parameters

Waveguide cross-sectional dimensions: 250 nm x 900 nm

Design parameters were chosen to ensure single mode operation at $\lambda = 1500$ nm.

Ring radius:

100 and 150 μm

$$\Delta \lambda = \frac{\lambda^2}{2\pi r \cdot n_{eff}}$$

Predicted FSR:

2.16 and 1.43 nm

Gap size:

250, 300, and 350 nm

Device characterization

Sweeping from 1530 to 1570 nm yields sharp resonances.

Q-factor: 1.5×10^4

Comparable to poly-Si¹: 2.0 x 10⁴

Free-spectral range @ 1550 nm:

1.32 nm for 150 μm rings

Theoretical: 1.43 nm

2.02 nm for $100 \mu m$ rings

Theoretical: 2.16 nm

We can model the behavior of these resonances using a scattering matrix:

$$T = \frac{t^2 + \alpha^2 - 2\alpha t \cos(\phi)}{t^2 + \alpha^2 + 2\alpha t \cos(\phi)}$$

t = transmission coefficient of the coupler

$$\alpha$$
 = total loss coefficient
= $e^{-\alpha L}$

By fitting the resonances to this equation, we can extract a propagation loss.

Extracted parameters:

t = 0.83

a = 0.84

Corresponding loss:

8.0 dB/cm!

Summary

We fabricated and characterized anatase TiO₂ micro-ring resonators

Q-factor of 1.5 x 10⁴

Propagation loss of 8.0 dB/cm

Polycrystalline anatase is a promising material for nonlinear optics

Future work

Lower the losses of the waveguides (increase the Q-factor)

Optimize deposition parameters

Optimize etching parameters

Enhance nonlinear effects with the help of these resonant cavities

Katia Shtyrkova, "Third Harmonic Generation in Polycrystalline Anatase Titanium Dioxide Nanowaveguides"

Wednesday June 11 5:45 PM Meeting Room 211 B/D

Thank you

Katia Shtyrkova, "Third Harmonic Generation in Polycrystalline Anatase Titanium Dioxide Nanowaveguides"

Wednesday June 11 5:45 PM Meeting Room 211 B/D

For a copy of this presentation: http://mazur.harvard.edu

