Fundamentals of intense laser interactions with solids

Extreme Photonics summer school on Ultrafast lasers and applications Ottawa, CA, 26 June 2014

Fundamentals of intense laser interactions with solids

@eric_mazur

Extreme Photonics summer school on Ultrafast lasers and applications Ottawa, CA, 26 June 2014

Outline

- propagation of pulses
- nonlinear optics
- femtosecond micromachining

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

where $\vec{E} = \vec{E}_{o}$

$$\vec{E} = \vec{E}_o \ e^{i(kx - \omega t)}$$

In nonferromagnetic media $\mu \approx 1$, and so $n \approx \sqrt{\epsilon}$.

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\frac{\omega}{k}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

where

$$\vec{E} = \vec{E}_o \ e^{i(kx - \omega t)}$$

In nonferromagnetic media $\mu \approx 1$, and so $n \approx \sqrt{\epsilon}$.

In dispersive media $n = n(\omega)$.

$$\boldsymbol{\epsilon} = \frac{C_d}{C_o}$$

$$\boldsymbol{\epsilon} = \frac{C_d}{C_o}$$

$$\boldsymbol{\epsilon} = \frac{C_d}{C_o}$$

Alternatively ϵ is measure of attentuation of electric field

Alternatively ϵ is measure of attentuation of electric field

In vacuum:
$$f\lambda = \frac{\omega}{k} = c \implies \omega = c k$$

In medium: $v = \frac{c}{\sqrt{\epsilon(\omega)}} = \frac{c}{n} \implies \omega = \frac{c}{\sqrt{\epsilon}} k$

Which charges participate?

Electron on a string: $F_{binding} = -m_e \omega_o^2 x$

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

$$F_{driving} = -eE = -eE_oe^{-i\omega t}$$

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

$$F_{driving} = -eE = -eE_o e^{-i\omega t}$$

Equation of motion:

$$m\frac{d^2x}{dt^2} = \sum F$$

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

$$F_{driving} = -eE = -eE_o e^{-i\omega t}$$

Equation of motion:

$$m\frac{d^2x}{dt^2} = \sum F$$

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} + m\omega_o^2 x = -eE$$

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t}$$

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t} \qquad x_o = -\frac{e}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o$$

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t} \qquad x_o = -\frac{e}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o$$

Oscillating dipole

$$p(t) = -ex(t) = \frac{e^2}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o e^{-i\omega t}$$

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t} \qquad x_o = -\frac{e}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o$$

Oscillating dipole

$$p(t) = -ex(t) = \frac{e^2}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o e^{-i\omega t}$$

Polarization

$$P(t) = \left(\frac{Ne^2}{m}\right) \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega} E(t) \equiv \epsilon_o \chi_e E(t)$$

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\epsilon_o m} \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\epsilon_o m} \sum_{j=1}^{\infty} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

Q: For a single resonance, is the value of $\epsilon(\omega)$ at high frequency

- 1. larger than,
- 2. the same as, or
- 3. smaller than the value at low frequency?

Dielectric function

$$\boldsymbol{\epsilon}(\boldsymbol{\omega}) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\boldsymbol{\epsilon}_o m} \sum_{j}^{n} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

Q: For a single resonance, is the value of $\epsilon(\omega)$ at high frequency

- 1. larger than,
- 2. the same as, or

3. smaller than the value at low frequency?

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\epsilon_o m} \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

Amplitude of bound charge oscillation

Below resonance: bound charges keep up with driving field \Rightarrow field attenuated, wave propagates more slowly

At resonance: energy transfer from wave to bound charges ⇒ wave attenuates (absorption)

Above resonance: bound charges cannot keep up with driving field \Rightarrow dielectric like a vacuum

Dielectric function

$$\boldsymbol{\epsilon}(\boldsymbol{\omega}) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\boldsymbol{\epsilon}_o m} \sum_{j}^{n} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

No binding:

$$F_{binding} \approx 0$$

No binding:

$$F_{binding} \approx 0$$

Equation of motion:

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -eE$$

No binding:

$$F_{binding} \approx 0$$

Equation of motion:

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -eE$$

Solution:
$$x(t) = \frac{e}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$$
 (no resonance)

No binding:

$$F_{binding} \approx 0$$

Equation of motion:

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -eE$$

Solution:
$$x(t) = \frac{e}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$$
 (no resonance)

Low frequency ($\omega \ll \gamma$) \Rightarrow current generated

$$J = -Ne \frac{dx}{dt} = \frac{Ne^2}{m} \frac{1}{\gamma - i\omega} E \approx \frac{Ne^2}{m\gamma} E \equiv \sigma E$$

 $\omega \gg \gamma$: σ complex $\Rightarrow J$ out of phase with E

 $\omega \gg \gamma$: σ complex $\Rightarrow J$ out of phase with E

Dipole:

$$p(t) = -ex(t) = -\frac{e^2}{m}\frac{1}{\omega^2 + i\gamma\omega}E(t)$$

 $\omega \gg \gamma$: σ complex $\Rightarrow J$ out of phase with E

Dipole:

$$p(t) = -ex(t) = -\frac{e^2}{m}\frac{1}{\omega^2 + i\gamma\omega}E(t)$$

Polarization:

$$P(t) = -\frac{Ne^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t) \equiv \epsilon_o \chi_e E(t)$$

 $\omega \gg \gamma$: σ complex $\Rightarrow J$ out of phase with E

Dipole:

$$p(t) = -ex(t) = -\frac{e^2}{m}\frac{1}{\omega^2 + i\gamma\omega}E(t)$$

Polarization:

$$P(t) = -\frac{Ne^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t) \equiv \epsilon_o \chi_e E(t)$$

Dielectric function:

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Little damping: $\gamma \approx 0 \Rightarrow \epsilon'' = 0$

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Little damping: $\gamma \approx 0 \Rightarrow \epsilon'' = 0$

$$\epsilon'(\omega) = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2} \equiv 1 - \frac{\omega_p^2}{\omega^2}$$

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Little damping: $\gamma \approx 0 \Rightarrow \epsilon'' = 0$

$$\epsilon'(\omega) = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2} \equiv 1 - \frac{\omega_p^2}{\omega^2}$$

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Add damping:

$$\gamma \lesssim \omega_p$$

Plasma acts like a high-pass filter

Plasma acts like a high-pass filter

log <i>N</i> (cm⁻³)	ω_p (rad s ⁻¹)	$oldsymbol{\lambda}_p$
22	6 x 10 ¹⁵	330 nm
18	6 x 10 ¹³	33 µm
14	6 x 10 ¹¹	3.3 mm
10	6 x 10 ⁹	0.33 m

 \bigvee \bigvee $\omega < \omega_p$

medium causes pulse to stretch

medium causes pulse to stretch

compensate by rearranging spectral components!

How do these arrangements work?

Does path length difference compensate?

grating gives low frequency longer path length!

Does path length difference compensate?

...so prism gives low frequency shorter path length!

only nonlinear dispersion changes pulse shape!

Outline

- propagation of pulses
- nonlinear optics
- femtosecond micromachining

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

and so:

$$P = P^{(1)} + P^{(2)} + P^{(3)} + \dots$$

Linear optics:

$$\vec{P} = \chi \vec{E}$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

and so:

$$P = P^{(1)} + P^{(2)} + P^{(3)} + \dots$$
$$P^{(2)} \approx P^{(1)} \text{ when } E = E_{at} \approx \frac{e}{a} \text{, and so } \chi^{(n)} \approx \frac{\chi^{(1)}}{E_{at}^{n-1}}$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

But even terms disappear in media with inversion symmetry!

$$\vec{P}^{(2)} = \chi^{(2)} : \vec{E}\vec{E}$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

But even terms disappear in media with inversion symmetry!

$$\vec{P}^{(2)} = \chi^{(2)} : \vec{E}\vec{E}$$

Invert all vectors:

$$-\vec{P}^{(2)} = \chi^{(2)}:(-\vec{E})(-\vec{E})$$

Nonlinear polarization can drive new field:

$$\nabla^2 \vec{E} + \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 \vec{P}}{\partial t^2}$$

But even terms disappear in media with inversion symmetry!

$$\vec{P}^{(2)} = \chi^{(2)} : \vec{E}\vec{E}$$

Invert all vectors:

$$-\vec{P}^{(2)} = \chi^{(2)}:(-\vec{E})(-\vec{E})$$

and so $\chi^{(2)} = -\chi^{(2)} = 0$.

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Second-order polarization:

$$P^{(2)}(t) = \chi^{(2)}E^2(t) = \frac{1}{2}\chi^{(2)}EE^* + \frac{1}{4}[\chi^{(2)}E^2e^{-2\omega t} + \text{c.c.}]$$

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Second-order polarization:

$$P^{(2)}(t) = \chi^{(2)}E^2(t) = \frac{1}{2}\chi^{(2)}EE^* + \frac{1}{4}[\chi^{(2)}E^2e^{-2\omega t} + \text{c.c.}]$$

Consider oscillating electric field:

 $E(t) = E e^{i\omega t} + \text{c.c.}$

Second-order polarization:

$$P^{(2)}(t) = \chi^{(2)}E^2(t) = \frac{1}{2}\chi^{(2)}EE^* + \frac{1}{4}[\chi^{(2)}E^2e^{-2\omega t} + \text{c.c.}]$$

Physical interpretation:

Linear response:

$$\vec{P} = \chi \vec{E}$$

Linear response:

$$\vec{P} = \chi \vec{E}$$

Nonlinear response:

$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

٠

Nonlinear response:
$$P^{(2)} = \chi^{(2)} E^2$$

- Nonlinear response: $P^{(2)} = \chi^{(2)} E^2$
- Q: Silicon atoms are arranged in this way. Does bulk silicon generate second harmonic?

- 1. Yes, silicon is not centrosymmetric (as the unit cell shows)
- 2. No, the crystal as a whole is centrosymmetric
- 3. No, any radiation at the second harmonic is absorbed
- 4. Other

- Nonlinear response: $P^{(2)} = \chi^{(2)} E^2$
- Q: Silicon atoms are arranged in this way. Does bulk silicon generate second harmonic?

- 1. Yes, silicon is not centrosymmetric (as the unit cell shows)
- 2. No, the crystal as a whole is centrosymmetric
- 3. No, any radiation at the second harmonic is absorbed
- 4. Other

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Intensity dependent term at fundamental frequency:

$$P^{(3)}(t) = \chi^{(3)}E(t)E^*(t)E(t) = \chi^{(3)}I(t)E(t)$$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Intensity dependent term at fundamental frequency:

$$P^{(3)}(t) = \chi^{(3)} E(t) E^*(t) E(t) = \chi^{(3)} I(t) E(t)$$

and so

so
$$P = P^{(1)} + P^{(3)} = (\chi^{(1)} + \chi^{(3)}I)E \equiv \chi_{eff}E$$

Third-order polarization: $P^{(3)}(t) = \chi^{(3)}E^3(t)$

3 frequencies, 3 terms + c.c.: complicated! In general

$$\cos^3\omega t = \frac{1}{4}\cos 3\omega t + \frac{3}{4}\cos \omega t$$

Intensity dependent term at fundamental frequency:

$$P^{(3)}(t) = \chi^{(3)} E(t) E^*(t) E(t) = \chi^{(3)} I(t) E(t)$$

and so

$$P = P^{(1)} + P^{(3)} = (\chi^{(1)} + \chi^{(3)}I)E \equiv \chi_{eff}E$$

$$n = \sqrt{\epsilon} = \sqrt{1 + \chi_{eff}} \approx \sqrt{1 + \chi^{(1)}} + \frac{1}{2} \frac{\chi^{(3)}I}{\sqrt{1 + \chi^{(1)}}} = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

self-focusing

but susceptibility is complex!

susceptibility	real part	imaginary part
linear	refraction	absorption
nonlinear	SHG, SFG, DFG, THG,	multiphoton absorption

$$\alpha = \alpha_o + \beta I + \gamma I^2 + \dots$$

Outline

- propagation of pulses
- nonlinear optics
- femtosecond micromachining

high intensity at focus...

... causes nonlinear ionization...

and 'microexplosion' causes microscopic damage...

translate sample

time scales

100 fs: laser energy transferred to electrons

time scales

10 ps: energy transfer to ions

time scales

100 ps: plasma expansion

time scales

10–100 ns: shock propagation

time scales

1 µs: thermal expansion

time scales

1 ms: permanent structural damage
Some applications:

- data storage
- waveguides
- microfluidics

Dark-field scattering

block probe beam...

... bring in pump beam...

... damage scatters probe beam

vary numerical aperture

fit gives threshold intensity: $I_{th} = 2.5 \times 10^{17} \text{ W/m}^2$

vary material...

...threshold varies with band gap (but not much!)

would expect much more than a factor of 2

critical density reached by multiphoton for low gap only

avalanche ionization important at high gap

threshold decreases with increasing numerical aperture

less than 10 nJ at high numerical aperture!

amplified laser: 1 kHz, 1 mJ

heat diffusion time: $\tau_{diff} \approx 1 \ \mu s$

long cavity oscillator: 25 MHz, 25 nJ

heat diffusion time: $\tau_{diff} \approx 1 \ \mu s$

High repetition-rate micromachining:

- structural changes exceed focal volume
- spherical structures
- density change caused by melting

the longer the irradiation...

... the larger the radius

waveguide micromachining

Opt. Lett. 26, 93 (2001)

waveguide micromachining

Opt. Lett. 26, 93 (2001)

structures guide light

Opt. Lett. 26, 93 (2001)

Applications

curved waveguides

Applications

curved waveguides

photonic fabrication techniques

	fs micromachining	other
loss (dB/cm)	< 3	0.1–3
bending radius	36 mm	30–40 mm
Δn	2 x 10 ⁻³	10 ⁻⁴ – 0.5
3D integration	Y	Ν

photonic devices

3D splitter

Bragg grating

Bragg grating

all-optical sensor

Summary

- important parameters: focusing, energy, repetition rate
- nearly material independent
- two regimes: low and high repetition rate
- high-repetition rate (thermal) machining fast, convenient

Nature Photonics 2, 219 (2008)

Funding:

Army Research Office DARPA Department of Energy NDSEG National Science Foundation

for more information and a copy of this presentation:

http://mazur.harvard.edu

Follow me!

eric_mazur

doogle search finn cening cucky

mazur			

Google Search	I'm Feeling Lucky
[(

mazur		

mazur		

Google Search	I'm Feeling Lucky
	<u> </u>

Funding:

Army Research Office DARPA Department of Energy NDSEG National Science Foundation

for more information and a copy of this presentation:

http://mazur.harvard.edu

Follow me!

eric_mazur