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1. INTRODUCTION

The interaction of intense femtosecond laser pulses with

solids offers the possibility of producing a new class of

plasmas having approximately solid-state density and

spatial density scale lengths much smaller than the wave-

length of light. These high-density plasmas with ex-

tremely sharp density gradients are currently of great

interest, particularly from the point of view of generat-

ing bright, ultrashort x-ray pulses. To produce such a

plasma, the laser pulse should rise from the intensity level

corresponding to the threshold of plasma formation to the

peak value in a time much shorter than the time scale

of plasma expansion. Thus the specification of the tol-

erable intensity background or of the acceptable amount

of prepulse of the laser pulse requires some knowledge of

threshold of plasma formation of the target material.

The transformation of solid material into a dense

plasma is also interesting from a fundamental physics

point of view. Electric breakdown of dielectrics, that is,

rapid ionization and formation of a plasma when the ma-

terial is exposed to electric fields exceeding some critical

value, is a rather general phenomenon. It has been in-

vestigated for a wide variety of different situations rang-

ing from static fields1 to very-high-frequency laser fields.2

In the mid-seventies Bloembergen and co-workers studied

laser-induced breakdown of alkali halides and some other

dielectric materials by using nanosecond and picosecond

laser pulses.3 They came to the conclusion that the phys-

ical mechanism responsible for the intrinsic optical bulk

breakdown of these materials is avalanche ionization, the

same as for static-electrical breakdown.

The variation of the breakdown threshold as a func-

tion of laser pulse duration has also been studied,4 and

the observations were found to be in agreement with

the avalanche ionization model. A breakdown threshold

field of �107 V�cm was measured for the shortest pulses

in these experiments, which were �10 ps in duration.

A simple extrapolation to the femtosecond regime would

predict breakdown fields in excess of 108 V�cm, which is

the order of magnitude at which tunneling ionization is

important, as already pointed out by Bloembergen.3

One of the key points in the research of Bloembergen

and his co-workers was the use of very tightly focused

laser beams, which allowed them to reach the breakdown

threshold of the materials while staying well below the

critical power of self-focusing. Self-focusing is one of the

major problems in the measurement of bulk breakdown

thresholds. In a more recent review Soileau et al.5 care-

fully examined the role of self-focusing in experiments

measuring laser-induced breakdown of bulk dielectric ma-

terials. They concluded that the breakdown and dam-

age thresholds are also strongly influenced by extrinsic

effects.

Thus far, the issue of breakdown thresholds in fem-

tosecond laser–solid interaction has barely been touched.

Very recently, Du et al.6 carried out laser-induced break-

down experiments on fused silica with pulses ranging in

duration from 7 ns to as low as 150 fs. They reported

an interesting dependence of the fluence threshold on

pulse duration, particularly a pronounced increase of the

threshold with decreasing pulse duration below 10 ps.

These observations were interpreted in terms of the bulk

avalanche ionization model. In related research, Stuart

et al.7 studied the pulse-width dependence of the thresh-

old of surface damage for a wide range of materials and

pulse durations. They observed only some weak varia-

tion of the damage threshold below 10 ps.

At the present time, laser-induced breakdown in the

femtosecond time regime and the accompanying material

damage processes are far from well understood. The key

issues that have to be addressed are the roles of the var-

ious possible ionization mechanisms, such as avalanche,

multiphoton, and tunneling processes, and the clarifica-

tion of surface and bulk breakdown processes. For bulk

breakdown processes the influence of self-focusing and/or

self-defocusing is likely to present an even more difficult

problem for ultrashort, femtosecond laser pulses than in

the previous research with longer pulses.

In this paper we describe measurements of the thresh-

old of plasma formation that were made when an in-

tense 120-fs laser pulse was focused on the surface of

optically transparent materials. An active pump–probe

technique, described in Section 2, was used to monitor the

0740-3224/96/010216-07$06.00
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“… clear evidence that no bulk plasmas…

[and] … no bulk damage could be produced

with femtosecond laser pulses”
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Femtosecond materials interactions

focus laser beam inside material
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Femtosecond materials interactions

high intensity at focus…
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Femtosecond materials interactions

…causes nonlinear ionization…
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Femtosecond materials interactions

and ‘microexplosion’ causes microscopic damage…
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Femtosecond materials interactions

photon energy < bandgap             nonlinear interaction           



Femtosecond materials interactions

nonlinear interaction provides bulk confi nement
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Femtosecond materials interactions

SEM & AFM:

• 100-nm cavities

• little colateral damage



Femtosecond materials interactions

Dark-fi eld scattering
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Femtosecond materials interactions

block probe beam…
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Femtosecond materials interactions

… bring in pump beam…
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Femtosecond materials interactions

… damage scatters probe beam
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Femtosecond materials interactions
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Femtosecond materials interactions

scattered signal

time (µs)

fused silica
1.0 µJ

si
gn

al
 (a

.u
.)

plasma

–0.2 0 0.2 0.4 0.6 0.8

3

2

1

0
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Femtosecond materials interactions

fi t gives threshold intensity: Ith = 2.5 x 1017 W/m2
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vary material…
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Femtosecond materials interactions

…threshold varies with band gap (but not much!)
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Femtosecond materials interactions

• nonlinear interaction

• disrupt matter inside bulk

• ablation at very low energy
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Subcellular surgery

Q: can we ablate material on the subcellular scale?



Subcellular surgery

Requirements:

• submicrometer precision (in bulk) 

• no damage to neighboring structures 

• independent of structure/organelle type 



Subcellular surgery

Cytoskeleton

• gives a cell its shape

• provides a scaffold for organelles

• responsible cell motion and attachment

• facilitates intracellular transport and signaling 

• required for cell division 
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two components

actin fibers microtubules
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Subcellular surgery
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Subcellular surgery

nucleus of fixed endothelial cell

white light microscopy



Subcellular surgery

nucleus of fixed endothelial cell

fluorescence microscopy



Subcellular surgery

irradiate with fs laser

fluorescence microscopy



Subcellular surgery

irradiate with fs laser

fluorescence microscopy



Subcellular surgery

bleaching or ablation?

TEM image
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Subcellular surgery

Definitive proof of ablation

• ablation width as small as 100 nm

• ablation threshold varies slightly

• ablation threshold 20% above bleaching threshold 



Subcellular surgery

Definitive proof of ablation

• ablation width as small as 100 nm

• ablation threshold varies slightly

• ablation threshold 20% above bleaching threshold 



Subcellular surgery

Q: subcellular surgery on live cells?
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subcellular surgery sequence
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subcellular surgery sequence

ethydium bromide test
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Subcellular surgery

subcellular surgery sequence
target 1

target 2

ethydium bromide test



Subcellular surgery

Q: can we probe the dynamics of the cytoskeleton?
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YFP-labeled actin fiber network of a live cell

10 µm
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cut a single fiber bundle

10 µm



Subcellular surgery

gap widens with time

t = 10 s10 µm
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10 µm



Subcellular surgery

retraction!

10 µm



Subcellular surgery

dynamics provides information on in vivo mechanics

10 µm



Subcellular surgery

time (s)

re
tr

ac
tio

n 
di

st
an

ce
 (

µm
)

0 5 10 15 20

4

3

2

1

0



Subcellular surgery

time (s)

re
tr

ac
tio

n 
di

st
an

ce
 (

µm
)

0 5 10 15 20

4

3

2

1

0

overdamped spring:   DL = L
∞
(1 – e–t/t) + Lo



Subcellular surgery

time (s)

re
tr

ac
tio

n 
di

st
an

ce
 (

µm
)

0 5 10 15 20

4

3

2

1

0

overdamped spring:   DL = L
∞
(1 – e–t/t) + Lo



Subcellular surgery

time (s)

re
tr

ac
tio

n 
di

st
an

ce
 (

µm
)

0 5 10 15 20

4

3

2

1

0

Lo and t independent of fiber width!



Subcellular surgery

time (s)

re
tr

ac
tio

n 
di

st
an

ce
 (

µm
)

0 5 10 15 20

4

3

2

1

0

tension in actin filaments is generated by myosin motors



Subcellular surgery

time (s)

re
tr

ac
tio

n 
di

st
an

ce
 (

µm
)

untreated

Y27

0 5 10 15 20

4

3

2

1

0

Y27: inhibits some myosin activity



Subcellular surgery

time (s)

re
tr

ac
tio

n 
di

st
an

ce
 (

µm
)

untreated

Y27

ML7

0 5 10 15 20

4

3

2

1

0

ML7: direct inhibitor of myosin activity



Outline

• femtosecond materials interactions

• subcellular surgery

• nanoneurosurgery



Nanoneurosurgery

Q: can we probe the neurological origins of behavior?
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Nanoneurosurgery

Juergen Berger & Ralph Sommer
Max-Planck Institute for Developmental Biology

Caenorhabditis elegans



Nanoneurosurgery

Caenorhabditis elegans

• simple model organism

• similarities to higher organisms

• genome fully sequenced

• easy to handle



Nanoneurosurgery

Caenorhabditis elegans

• 80 μm x 1 mm

• about 1000 cells

• 302 neurons

• invariant wiring diagram

• neuronal system completely encodes behavior
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Caenorhabditis elegans
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Caenorhabditis elegans
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C. elegans life cycle
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dissect
neurons
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femtosecond laser ablation
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Nanoneurosurgery

ASH neurons

• responsible for chemical sensing

• ciliary projections extend through skin

• one on each side



ASH neurons

Nanoneurosurgery



ASH neurons

Nanoneurosurgery



ASH neurons

Nanoneurosurgery



ASH neurons

Nanoneurosurgery

axon ring

dendrites

L/R cell bodies



make ASH neurons express GFP

Nanoneurosurgery

a …… b

GFP

ASH neuron gene

GFP gene

c d



make ASH neurons express GFP

Nanoneurosurgery



Nanoneurosurgery

GFP: absorbs UV, emits green



Nanoneurosurgery

4 µm

retraction of cut dendrite (6 nJ)



Nanoneurosurgery

4 µm

retraction of cut dendrite (6 nJ)



Nanoneurosurgery

t = 30 s

4 µm

retraction of cut dendrite (6 nJ)



Nanoneurosurgery

t = 3 min

4 µm

retraction of cut dendrite (6 nJ)



ASH neurons

Nanoneurosurgery



ASK neurons

Nanoneurosurgery



AUA neurons

Nanoneurosurgery



ASI neurons

Nanoneurosurgery



Nanoneurosurgery

need exquisite precision!



Nanoneurosurgery

DiO-stained bundle of dendrites

5 µm



Nanoneurosurgery

cut single dendrite in bundle (3 nJ)

5 µm



Nanoneurosurgery

no damange to neighboring dendrites

5 µm



Nanoneurosurgery

revive worm, reimage 1 day later
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AFD neurons (temperature sensors)

Nanoneurosurgery



Nanoneurosurgery
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Nanoneurosurgery

Q: where does the ASH sense temperature?
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glass slide

microdroplet

microdroplet assay
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glass slide
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microdroplet assay



Nanoneurosurgery

glass slide

microdroplet

video
camera

microdroplet assay



Nanoneurosurgery

surgery results in quantifiable behavior changes

before after



Nanoneurosurgery

temperature sensing occurs at tip of dendrite



Conclusion

 

 

great tool for manipulating the machinery of life
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