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The historical approach

e Newton’s laws

e Collisions

e Momentum (and conservation)
e Work and energy

e Conservation of energy



Ernst Mach (1838-1916)

e Collisions

e Conservation of momentum
e Newton’s laws

e Work and energy

e Conservation of energy



Ernst Mach (1838-1916)

e Collisions (experimental)

e Conservation of momentum (experimental)
e Newton’s laws

e Work and energy

e Conservation of energy



wouldn’t it be nice if we could start simple?
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Principles and Practice of Physics

e Conservation of momentum
e Conservation of energy

e Interactions

e Force

e Work
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More logical!
e Unity

e Focus on physics
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he motion we have been dealing with so far in this
text is called translational motion (Figure 11.1a).
This type of motion involves no change in an ob-
ject’s orientation; in other words, all the particles in the
object move along identical parallel trajectories. During
rotational motion, which we begin t0 study in this chap-
ter, the orientation of the object changes, and the particles
in an object follow different circular paths centered on
a straight line called the axis of rotation (Figure 11.1b).
Generally, the motion of rigid objects is a combination of
these two types of motion (Figure 11.1c), but as we shall
see in Chapter 12 this combined motion can be broken
down into translational and rotational parts that can be
analyzed separately. Because we already know how to
describe translational motion, knowing how to describe
rotational motion will complete our description of the
motion of rigid objects.
As Figure 11.1b shows, each particle in 2 rotating object
traces out 2 circular path, moving in what we call circular

Figure 11 1 Translational and rotational motion of a rigid object.
(a) Translational motion

All points on object follow identical trajectories.

(b) Rotational motion

All points on object trace circles centered on axis of rotation.

axis of rotation-

(c) Combined translation and rotation

Different points on abject follow different trajectories-

*
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1A CIRCULAR MOTION AT CONSTANT SPEED 255

motion. We therefore begin our analysis of rotational mo-
tion by describing circular motion. Circular motion 0ccurs
all around us. A speck of dust stuck to a spinning CD> 2
stone being whirled around on 2 string, a person ona Ferris
wheel—all travel along the perimeter of a circle, repeating
their motion over and over. Circular motion takes place ina
plane, and so in principle we have already developed all the
tools required to describe it. To describe circular and rota-
tional motion we shall follow an approach that is analogous
to the one we followed for the description of translational
motion. Exploiting this analogy, we can then use the same
results and insights gained in carlier chapters to introduce a
third conservation law.

11.1 Circular motion at constant speed

Figure 11.2 shows two examples of circular motion: @ block
dragged along 2 circle by a rotating turntable and 2 puck
constrained by 2 string to move in 2 cirdle. The block and
puck are said to revolve around the vertical axis through
the center of each circular path. Note that the axis about
which they revolve is external to the block and puck and
perpendicular to the plane of rotation. This is the defini-
tion of revolve—1o move in circular motion around an
external center. Objects that turn about an internal axis,
such as the turntable in Figure 11.2a, are said to rotate.
These two types of motion are closely related because a
rotating object can be considered as a system of an enor-
mous number of particles, each revolving around the axis
of rotation.

Figure 11 .2 Examples of circular motion.

(a) Block revolves on rotating turntable
\ axis of rotation
Block revolves because |
axis is external to it. t/
. |

Turntable rotates
because axis 15 internal to it.

(b) Tethered puck revolves on air table
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Self-quiz

1. Two carts are about to collide head-on on a track. The inertia of cart 1 is greater than the inertia of
cart 2, and the collision is elastic. The speed of cart 1 before the collision is higher than the speed
of cart 2 before the collision. (@) Which cart experiences the greater acceleration during the colli-
sion? (b) Which cart has the greater change in momentum due to the collision? (¢) Which cart has
the greater change in kinetic energy during the collision?

2. Which of the following deformations are reversible and which are irreversible: (a) the deformation
of a tennis ball against a racquet, (b) the deformation of a car fender during a traffic accident, (c) the
deformation of a balloon as it is blown up, (d) the deformation of fresh snow as you walk through it?

3. Translate the kinetic energy graph in Figure 7.2 into three sets of energy bars: before the collision,
during the collision, and after the collision. In each set, include a bar for K, a bar for K, and a bar
for the internal energy of the system, and assume that the system is closed.

4. Describe a scenario to fit the energy bars shown in Figure 7.22. What happens during the interaction?

Figure 7.22

Figure 7.23

K v E Ey K v E Eun
5. Describe a scenario to fit the velocity-versus-time curves for two colliding objects shown in
Figure 7.23. What happens to the initial energy of the system of colliding objects during the
interaction?

Answers

1. (a) The cart with the smaller inertia experiences the greater acceleration (see Figure 7.2). (b) The magnitude
of Ap, is the same as the magnitude of Ap,, but the changes are in opposite directions because the momentum
of the system does not change during the collision. (¢) |AK;| = |AK,|, but the changes are opposite in sign
because the kinetic energy of the system before the elastic collision has to be the same as the kinetic energy of
the system afterward.

2. (a) Reversible. The ball returns to its original shape. (b) Irreversible. The fender remains crumpled. (c) Irreversible.
The balloon does not completely return to its original shape after deflation. (d) Irreversible. Your footprints
remain.

3. See Figure 7.24. Before the collision K; = 0, K; is maximal, Figure 7.24
and E,, = 0; during the collision K;, K3, and Ej, are all
about one-third of the initial value of K; after the collision
K, is about 7/8 of the initial value of Ky, K3 is about 1/8 of
the initial value of K;, and Ey,, = 0. Because the system is
closed, its energy is constant, which means the sum of the
three bars is always the same.

before during after

Ki Kp Bt Ko Ko Eip Ko Ko Eing

4. During the interaction, eight units of source energy is con-
verted to two units of kinetic energy, two units of potential
energy, and four units of thermal energy. One possible scenario is the vertical launching of a ball. Consider the
system comprising you, the ball, and Earth from just before the ball is launched until after it has traveled some
distance upward: The source energy goes down (you exert some effort), thermal energy goes up (in the process
of exerting effort you heat up), kinetic energy goes up (the ball was at rest before the launch), and so does po-
tential energy (the distance between the ground and the ball increases).

5]

. The graph represents an inelastic collision because the relative velocity of the two objects decreases to about
half its initial value. In order for the momentum of the system to remain constant, the inertia of object 1 must
be twice that of object 2. Possible scenario: Object 2, inertia 11, collides inelastically with object 1, inertia 2m.
The collision brings object 2 to rest and sets object 1 in motion. The interaction converts the initial kinetic energy
of object 2 to kinetic energy of cart 1 and to thermal energy and/or incoherent configuration energy of both carts.
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6.5 GALILEAN RELATIVITY 133

6.5 Galilean relativity

Consider two observers, A and B, movin
other. Suppose they observe the same e

gure 6.13a). Observer A sees the
eventas happening at Position 7, at clock reading t,., (Figure 6.1 3b).* Observer B

sees the event at position 7y, at clock reading f,. What is the relationship be-
tween these clock readings and positions?

If, as we discussed in Chapter 1, we assume time is absolute—the same every-
where—and if the two observers have synchronized their (identical) clocks, they
both observe the event at the same clock readings, which means

Lae = lg,. (6.1)

Because the clock readings of the two observers always agree, we can omit the
subscripts referring to the reference frames:

th =ty =t (6.2)

e is equal to B’s displacement over the time interval
At=1t —-0= fe> and so 7, = 3, t. because B moves at constant velocity
Uap. Therefore

ae = Fap + Fre = Typt, + The. (6.3)

Equations 6.2 and
frame to data on the same event e collected in a r

Figure 6.13 Two observers moving relative to each other observe the same event. Observer B moves at constant velocity %,
relative to observer A, (a) The origins O of the two reference frames overlap at instant ¢ = (), (b) At instant
occurs, the origin of observer B’s reference frame has a displacement Uapl, relative to reference frame A.

(a) (b) [Ae IBL‘ = tAe = [c

te, when the event

t collisions

A B . .

ﬂ S — tic collisions
_ (5

— S—

Origin in frame A ..» A Origin in frame B -» (J)H i arvatlon of energy
Both \)l)sc;\ers start at origin

—
I I
at clock reading ¢ = 0,

OA = OB
2

sive separations

Tap = Uppt, <. Ty

In time interval show n, observer B
advances this distance.

S7001 JAILVLILNVYNO

_

*Remember our subscript form: The capital letter refers to the reference frame; the lowercase e is for

“event” Thus the vector Txe Tepresents observer A’s measurement of the position at which the event
oceurs.
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234 CHAPTER 10 MOTION IN A PLANE

(b) From Figure 10.18 I see that tanf = |FSl /|Fpyl. For
6 < 45°, tan 0 < 1,and so |F5,.| < |FS;,|- Because FEL = Fg,

and |F§,,| = Ff,, I find that for 6 <45° Ff, < F‘F;p. When

0> 45°, tan 0 > 1, and s |FS,.| > |FS;,| and Fi, > Fg.v

(© |FS,,| = Féand FS, = V(F§0)? + (F5,)* . Therefore, FS,
must always be larger than FE'P when 6 # 0. ¢/

@ EVALUATE RESULT I know from experience that you have to
pull harder to move a swing farther from its equilibrium posi-
tion, and so my answer to part a makes sense. With regard to
part b, when the swing is at rest at 45°, the forces Fy, and ﬁfp
on your friend make the same angle with the force FS;, and so
Fy, and F§, should be equal in magnitude. The force of gravity
is independent of the angle, but the force exerted by the rope in-
creases with increasing angle, and so it makes sense that for angles
larger than 45°, va is larger than F(r’p In part ¢, because the
vertical component of the force F§, exerted by the seat on your
friend always has to be equal to the force of gravity, adding a
horizontal component makes PE‘, larger than ﬁgP, as I found.

@ 10.4 You decide to move a heavy file cabinet by sliding
it across the floor. You push against the cabinet, but it doesn't
budge. Draw a free-body diagram for it.

10.4 Friction

The force that opposes your push on the file cabinet in
Checkpoint 10.4—the tangential component of the contact
force exerted by the floor on the cabinet—has to do with
friction. If the floor were very slick or if the cabinet had
casters, there would be little friction and your push would
easily move the cabinet. Instead, you have to lean against it
with all your strength until, with a jerk, it suddenly begins
to slide. Once you get the cabinet moving, you must keep
pushing to keep it in motion. If you stop pushing, friction
stops the motion.

E@!J 10.5 (a) Suppose you push the file cabinet just enough to
keep it moving at constant speed. Draw a free-body diagram for
the cabinet while it slides at constant speed. (b) Suddenly you
stop pushing. Draw a free-body diagram for the file cabinet at
this instant.

Don't skip Checkpoint 10.5! It will be harder to under-
stand the rest of this section if you haven't thought about
these situations.

Figure 10.19 A demonstration of the normal force.

plank on brick inc

architecture

Even though the normal and tangential components of
the contact force exerted by the floor on the cabinet belong
to the same interaction, they behave differently and are
usually treated as two separate forces: the normal compo-
nent being called the normal force and the tangential com-
ponent being called the force of friction.

To understand the difference between normal and fric-
tional forces, consider a brick on a horizontal wooden plank
supported at both ends (Figure 10.19a). Because the brick
is at rest, the normal force F;‘u exerted by the plank on
it is equal in magnitude to the gravitational force exerted
on it. Now imagine using your hand to push down on
the brick with a force F;. Your downward push increases
the total downward force exerted on the brick, and, like a
spring under compression, the plank bends until the nor-
mal force it exerts on the brick balances the combined
downward forces exerted by your hand and by Earth on the
brick (Figure 10.19b). As you push down harder, the plank
bends more, and the normal force continues to increase
(Figure 10.19¢) until you exceed the planK’s capacity to pro-
vide support and it snaps, at which point the normal force
suddenly disappears (Figure 10.194). So, normal forces take
on whatever value is required to prevent whatever is push-
ing down on a surface from moving through that surface—
up to the breaking point of the supporting material.

Next imagine that instead of pushing down on the
brick of Figure 10.19a, you gently push it to the right, as
in Figure 10.20. As long as you don’t push hard, the brick
remains at rest. This tells you that the horizontal forces
exerted on the brick add to zero, and so the plank must be
exerting on the brick a horizontal frictional force that is
equal in magnitude to your push but in the opposite direc-
tion. This horizontal force is caused by microscopic bonds
between the surfaces in contact. Whenever two objects are
placed in contact, such bonds form at the extremities of
microscopic bumps on the surfaces of the objects. When
you try to slide the surfaces past each other, these tiny
bonds prevent sideways motion. As you push the brick to
the right, the bumps resist bending and, like microscopic
springs, each bump exerts a force to the left. The net effect
of all these microscopic forces is to hold the brick in place.
As you increase the force of your push, the bumps resist
bending more and the tangential component of the contact
force grows. This friction exerted by surfaces that are not
moving relative to each other is called static friction.

As you push harder, contact force exerted by

ses, supporting brick . . . ... until plank breaks.

N pl 3

cation of collisions
energy

energy

systems




234 CHAPTER 10 MOTION IN A PLANE
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@ 10.4 You decide to move a heavy file cabinet by sliding
it across the floor. You push against the cabinet, but it doesn't
budge. Draw a free-body diagram for it.

10.4 Friction

The force that opposes your push on the file cabinet in
Checkpoint 10.4—the tangential component of the contact
force exerted by the floor on the cabinet—has to do with
friction. If the floor were very slick or if the cabinet had
casters, there would be little friction and your push would
easily move the cabinet. Instead, you have to lean against it
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E@!J 10.5 (a) Suppose you push the file cabinet just enough to
keep it moving at constant speed. Draw a free-body diagram for
the cabinet while it slides at constant speed. (b) Suddenly you
stop pushing. Draw a free-body diagram for the file cabinet at
this instant.
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Even though the normal and tangential components of
the contact force exerted by the floor on the cabinet belong
to the same interaction, they behave differently and are
usually treated as two separate forces: the normal compo-
nent being called the normal force and the tangential com-
ponent being called the force of friction.

To understand the difference between normal and fric-
tional forces, consider a brick on a horizontal wooden plank
supported at both ends (Figure 10.19a). Because the brick
is at rest, the normal force F;‘u exerted by the plank on
it is equal in magnitude to the gravitational force exerted
on it. Now imagine using your hand to push down on
the brick with a force F;. Your downward push increases
the total downward force exerted on the brick, and, like a
spring under compression, the plank bends until the nor-
mal force it exerts on the brick balances the combined
downward forces exerted by your hand and by Earth on the
brick (Figure 10.19b). As you push down harder, the plank
bends more, and the normal force continues to increase
(Figure 10.19¢) until you exceed the planK’s capacity to pro-
vide support and it snaps, at which point the normal force
suddenly disappears (Figure 10.194). So, normal forces take
on whatever value is required to prevent whatever is push-
ing down on a surface from moving through that surface—
up to the breaking point of the supporting material.

Next imagine that instead of pushing down on the
brick of Figure 10.19a, you gently push it to the right, as
in Figure 10.20. As long as you don’t push hard, the brick
remains at rest. This tells you that the horizontal forces
exerted on the brick add to zero, and so the plank must be
exerting on the brick a horizontal frictional force that is
equal in magnitude to your push but in the opposite direc-
tion. This horizontal force is caused by microscopic bonds
between the surfaces in contact. Whenever two objects are
placed in contact, such bonds form at the extremities of
microscopic bumps on the surfaces of the objects. When
ou try to slide the surfaces past each other, these tiny
Qynds prevent sideways motion. As you push the brick to
right, the bumps resist bending and, like microscopic
ings, each bump exerts a force to the left. The net effect
% all these microscopic forces is to hold the brick in place.
As you increase the force of your push, the bumps resist
bending more and the tangential component of the contact
force grows. This friction exerted by surfaces that are not
moving relative to each other is called static friction.

As you push harder, contact force exerted by
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10.4 Friction

The force that opposes your push on the file cabinet in \
Checkpoint 10.4—the tangential component of the contact
force exerted by the floor on the cabinet—has to do with
friction. If the floor were very slick or if the cabinet had
casters, there would be little friction and your push would
easily move the cabinet. Instead, you have to lean against it
with all your strength until, with a jerk, it suddenly begins
to slide. Once you get the cabinet moving, you must keep
pushing to keep it in motion. If you stop pushing, friction [cation of collisions
stops the motion. energy

@ energy
10.5 (a) Suppose you push the file cabinet just enough to  |systems
keep it moving at constant speed. Draw a free-body diagram for
the cabinet while it slides at constant speed. (b) Suddenly you
stop pushing. Draw a free-body diagram for the file cabinet at
this instant.

Don’t skip Checkpoint 10.5! It will be harder to under-
stand the rest of this section if you havent thought about
these situations.

Figure 10.19 A demonstration of the normal force.
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19.4 EVOLUTION TOWARD THE MOST PROBABLE MACROSTATE 511

Figure 19.14 Probability of finding a given fraction of the system’s
energy in compartment A of the box in Figure 19.13. As the number
of energy units increases from 10 to 1000, the probability distribution
becomes narrower but remains centered about the mean energy.
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0 1
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basic states available to the system is obtained by multiply-
ing Q, by Qp: QO = 0, Q.

The probability of each macrostate is obtained by di-
viding ), the number of basic states associated with that
macrostate, by ()., the number of basic states associated
with all macrostates (2.00 X 107; see Table 19.2). The table
shows you that this probability is greatest for the macro-
state Ey = 7, as you would expect. Given that there are 14
particles in A and six in B, on average each particle has half
an energy unit, and so the E, = 7 macrostate corresponds
to an equipartitioning of the energy. The curve labeled 10
units in Figure 19.14 shows this probability as a function of
the fraction of energy contained in A.

Example 19.6 Probability of macrostates

In Figure 19.13, after a very large number of particle-partition
collisions have occurred, what is the probability of finding the
system in (a) the macrostate E, = 1 and (b) the macrostate
Ey, =72

© GETTING STARTED Because all basic states are equally likely,
the probability of finding the system in macrostate E, is equal
to the fraction /), where  is the number of basic states
of the system associated with the macrostate E, and Q, is
the total number of basic states associated with all macrostates
(2.00 X 107; Table 19.2).

© DEVISE PLAN To find the probability of a given macrostate
E,, Tdivide the value of () for that macrostate given in Table 19.2
by Qo = 2.00 X 107.

© EXECUTE PLAN (a) For Ey = 1, Table 19.2 tells me that
) = 2.80 X 10". The probability of macrostate E, = 1is thus
(2.80 X 10%)/(2.00 X 107) = 1.40 X 1073, v/

(b) For the macrostate E, = 7, ) = 4.34 X 10°.So the probabil-
ity of this macrostate occurring is (4.34 X 109 /(2.00 X 107) =
217 X 107 v

@ EVALUATE RESULT My result shows that the macrostate
E, =7 is more than 150 times more probable than the macro-
state E; = 1. This makes sense because, as we saw earlier, the
macrostate Ey = 7 is the equilibrium state for which there is an
equipartition of energy.

1 architecture

If we increase the number of energy units in the box
of Figure 19.13 to 100 or 1000, the number of basic states
grows exponentially, and if we plot the probability of each
macrostate as a function of the fraction of energy in A, we
obtain the two curves labeled 100 and 1000 in Figure 19.14.
Just as we saw in Figure 19.7, the most probable macro-
state doesn’t change, but the probability peaks much more
narrowly around this state. In other words, the most prob-
able macrostate—the equilibrium state—is now even more
likely than any other macrostate.

Note that the number of basic states is very large, even
with just ten energy units and 20 particles. In a box of vol-
ume 1 m’ containing air at atmospheric pressure and room
temperature, there are on the order of 10*° particles and
10% energy units per particle, and so the number of basic
states becomes unimaginably large—on the order of ten
raised to the power 10*'! Because the number of basic states
is so large, it is more convenient to work with the natural
logarithm of that number. As you can see from the right-
most column in Table 19.2, the natural logarithm of the
number of basic states is indeed much more manageable.

Figure 19.15 shows how the natural logarithms of (), Q,
and () vary with the number of energy units in compartment
A in Figure 19.13. As you can see, the natural logarithm of
the number of basic states changes much less rapidly than the
number of basic states. Note that as E /s increases, the num-
ber of basic states (), increases. As E, increases, however, Ey
decreases and so () decreases. The number of basic states
) is maximum when E, = 7 and Ey = 3, representing an
equipartition of energy. The most probable macrostate (equi-
librium) is achieved when there is equipartition of energy.

@ 19.15 What is the average energy per particle in compart-
ments A and B in Figure 19.13 (a) when there is one energy unit
in A and (b) when the system is at equilibrium?

As you can see from Table 19.2, with E, = 1 the number of
basic states for the system (2.80 X 10*) is more than 100 times
smaller than it is at equilibrium (E, = 7, O = 4.34 X 10%),
Collisions between the particles and the partition redistribute

Figure 19.15 Natural logarithm of the number of basic states for
compartment A, for compartment B, and for the two compartments in
Figure 19.13 combined. The number of basic states is maximal when the
energy is equipartitioned (seven energy units in A).
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energy in compartment A of the box in Figure 19.13. As the number
of energy units increases from 10 to 1000, the probability distribution
becomes narrower but remains centered about the mean energy.

1000

£z
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E
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E
o
10 units
\
0
0 1

fraction of energy in A

basic states available to the system is obtained by multiply-
ing Q, by Qp: QO = 0, Q.

The probability of each macrostate is obtained by di-
viding ), the number of basic states associated with that
macrostate, by ()., the number of basic states associated
with all macrostates (2.00 X 107; see Table 19.2). The table
shows you that this probability is greatest for the macro-
state Ey = 7, as you would expect. Given that there are 14
particles in A and six in B, on average each particle has half
an energy unit, and so the E, = 7 macrostate corresponds
to an equipartitioning of the energy. The curve labeled 10
units in Figure 19.14 isrobability as a function of

n Figure 19.13, after a very large number of particle-pal
collisions have occurred, what is the probability of finding %
system in (a) the macrostate E, = 1 and (b) the macrostat®
Ey, =72

© GETTING STARTED Because all basic states are equally likely,
the probability of finding the system in macrostate E, is equal
to the fraction /), where  is the number of basic states
of the system associated with the macrostate E, and Q, is
the total number of basic states associated with all macrostates
(2.00 X 107; Table 19.2).

© DEVISE PLAN To find the probability of a given macrostate
E,, Tdivide the value of () for that macrostate given in Table 19.2
by Qo = 2.00 X 107.

© EXECUTE PLAN (a) For Ey = 1, Table 19.2 tells me that
) = 2.80 X 10". The probability of macrostate E, = 1is thus
(2.80 X 10%)/(2.00 X 107) = 1.40 X 1073, v/

(b) For the macrostate E, = 7, ) = 4.34 X 10°.So the probabil-
ity of this macrostate occurring is (4.34 X 109 /(2.00 X 107) =
217 X 107 v

@ EVALUATE RESULT My result shows that the macrostate,
E, =7 is more than 150 times more probable than the mac
state Ey = 1. This makes sense because, as we saw earliej

1 architecture

If we increase the number of energy units in the box
of Figure 19.13 to 100 or 1000, the number of basic states
grows exponentially, and if we plot the probability of each
macrostate as a function of the fraction of energy in A, we
obtain the two curves labeled 100 and 1000 in Figure 19.14.
Just as we saw in Figure 19.7, the most probable macro-
state doesn’t change, but the probability peaks much more
narrowly around this state. In other words, the most prob-
able macrostate—the equilibrium state—is now even more
likely than any other macrostate.

Note that the number of basic states is very large, even
with just ten energy units and 20 particles. In a box of vol-
ume 1 m’ containing air at atmospheric pressure and room
temperature, there are on the order of 10*° particles and
10% energy units per particle, and so the number of basic
states becomes unimaginably large—on the order of ten
raised to the power 10*'! Because the number of basic states
is so large, it is more convenient to work with the natural
logarithm of that number. As you can see from the right-
most column in Table 19.2, the natural logarithm of the
number of basic states is indeed much more manageable.

Figure 19.15 shows how the natural logarithms of ), Q,
and () vary with the number of energy units in compartment
A in Figure 19.13. As you can see, the natural logarithm of
the number of basic states changes much less rapidly than the
number of basic states. Note that as E /s increases, the num-
ber of basic states (), increases. As E, increases, however, Ey
decreases and so () decreases. The number of basic states
) is maximum when E, = 7 and Ey = 3, representing an
equipartition of energy. The most probable macrostate (equi-
librium) is achieved when there is equipartition of energy.

@ 19.15 What is the average energy per particle in compart-
ments A and B in Figure 19.13 (a) when there is one energy unit
in A and (b) when the system is at equilibrium?

As you can see from Table 19.2, with E, = 1 the number of
Wysic states for the system (2.80 X 10%) is more than 100 times
ller than it is at equilibrium (E, = 7, Q = 4.34 X 10°).
Cdllisions between the particles and the partition redistribute

€ 19.15 Natural logarithm of the number of basic states for
prtment A, for compartment B, and for the two compartments in

t 19.13 combined. The number of basic states is maximal when the
y is equipartitioned (seven energy units in A).
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Example 19.6 Probability of macrostates

In Figure 19.13, after a very large number of particle-partition
collisions have occurred, what is the probability of finding the
system in (a) the macrostate E, = 1 and (b) the macrostate
EA = 7°?

@ GETTING STARTED Because all basic states are equally likely,
the probability of finding the system in macrostate E A is equal
to the fraction Q/Q,, where Q is the number of basic states
of the system associated with the macrostate E, and QO is

the total number of basic states associated with all macrostates
(2.00 X 107; Table 19.2). fication of collisions

@ DEVISE PLAN To find the probability of a given macrostate [ energy
E,, I divide the value of € for that macrostate givenin Table 19.2 Al energy

by Qo = 2.00 X 10, i systems

© EXECUTE PLAN (a) For E, = 1, Table 192 tells me that
) = 2.80 X 10% The probability of macrostate E, = 1 is thus
(2.80 X 10%)/(2.00 X 107) = 1.40 X 1073, ¢/

(b) For the macrostate E, = 7, Q) = 4.34 X 10°.So the probabil-
ity of this macrostate occurring is (4.34 X 10°) /(2.00 X 107) =
2,17 X 1071 v

O EVALUATE RESULT My result shows that the macrostate
E = 7 is more than 150 times more probable than the macro-
state £, = 1. This makes sense because, as we saw earlier, the
macrostate E, = 7 is the equilibrium state for which there is an
equipartition of energy.
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192 CHAPTER 11 PRACTICE MOTION INA CIRCLE

Make an urder—of—magnitude estimate of each of the following quanti
hints below. Use them as needed to guide your thinking:

o=

W

o

Hints

_ The rotational inertia of a bowling ball about an axis tangent to

)
. Your rotational inertia as you turn over in your sleep W, 0

eloping @ Feel

ties. Letters in parentheses refer to

6. The speed you would need to orbit Earth in alow orbit (B P)
7. The magnitude of the force exerted by the Sun on Earth to hold
Earth in orbit B,L T, 7)
8. The kinetic energy associated with Earth's rotation (Z, B D)
9. The angular momentum, about 2 vertical axis through your
house, of a large cat driving down your street (H, Y, M)
10. The kinetic energy of a spinning YO-Y© KW],Q

The speed ¥ of a point on the equator as Earth rotates (D; P)
its surface (A, R, X

The angular momentum around the axle of a wheel/tire combi-
nation on your car as you cruise o the freeway (B, 1,0, AA,S)

The angular momentum of 2 spinning ice skater with each arm
held out to the side and parallel to the ice (G» X, N, U)

I -

If needed, see Key for answers to these guiding questions.

A.
B.

mm Y

cz zTATTES?

RN Nk

. What simple geometric shape is an appropriate model for a

. What is Earth’s rotational speed?
. What is the combined inertia of the wheel and tire? Y. Whatisa typical speed for a car moving on a city street?

. What is the inertia of a midsize car?

. What s the yo-yo's rotational inertia?
. What is the radius of Earth’s orbit?
. What is the perpendicular distance from the house to the car’s cylinder with two thin-rod arms of inertia 4 kg held out perpen-

. What is the final rotational speed?
. What is the radius of a bowling ball?

What is the inertia of a bowling ball? U. Whatis the skater’s initial rotational speed?
How longa time intervalis needed for Earth to imake one revolu- V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to
reach the end of the string?
sleeping person? X. What is needed in addition to the formulas in Principles
Table 11.3 in order to determine this quantity?

tion around the Sun?

What is the relationship between force and acceleration for this Z. Whatis Earth's inertia?
orbit? AA. Whatisa typical freeway cruising speed?
How can you model the skater’s shape during her spin?

S
What is the radius of the tire? Key (all values approximate)

How many turns are needed to rewind the yo-yo? A.7kg B.1y = 3% 10°s; C solid cylinder of radius 0.2 m;
D. perind —24h,s0® = 7 %X 10 S¢h E. 10" kg; from

Egs. 8.6, §.17,and 11.16, SE= ma, so mg = MU/ G. asolid

dicularly; H.2 X 10° kg; 1.0.3m3 J.2 X 10" turns;

K.6 % 107 kg" me (with yo-yo modeled as solid cy]indcr);

line of motion?
What is the skater’s rotational inertia with arms held out?

. How can you model the combined rotational inertia ofthe wheel 1.2 % 10" m; M.2 X 10' m; N.4kg* m?; O. between MR’

and tire?

(cylindriial shell rcpresen\ing tire) and MR?/2 (solid cyl'mder
What is Earth's radius? 2/4; P.

6 % 10°m; Q. about twice
5% 1075 s R.OImS
S. no slipping, $0 @ =1 _10°s; T.8 X 10" >m/ &

representing wheel)—say, 3MR"/

the average rotational speed, or @

What is the rotational speed of the tire? U.w=10s" V.7 % 10" kg; W.058 X. the parallel-axis
What is the required cemripetal acceleration? theorem; Y.3 % 10" mi/h; Z. 6 X 102 kg; AA- 3 % 10" m/s
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hints below. Use them as needed to guide your thinking:

o=

W

o

Hints
If needed, see Key for
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. Your rotational inertia as you turn over in yo

The speed ¥ of a point on the equator as Earth rotates (D, P)

The rotational inertia of 2 bowling ball aboutan axis
its surface (A, R, X)

eep (Vs Q)

theel/tire combi-
nation on your car as you cruise on the geway (B,1,0,AA, S)
fce skater with each arm

The angular momentum around the axle ©

The angular momentum of 2 spinni
held out to the side and parallel

ers to these guiding questions.

o rtia of a bowling ball?

. How logdfa time intervalis needed for Earth to imake one revolu-

tiongfound the Sun?
fat simple geometric shape is an appropriate model for a
eeping person?

. What s E arth’s rotational speed?
. What is the combined inertia of the wheel and tire?

What is the relationship between force and acceleration for this
orbit?

. How can you model the skater’s shape during her spin?
_ What is the inertia of a midsize car?

What is the radius of the tire?
How many turns are needed to rewind the yo-yo?

. What is the yo-yo's rotational inertia?

What is the radius of Earths orbit?

. What is the perpendicular distance from the house to the car’s

line of motion?

What is the skater’s rotational inertia with arms held out?

How can you model the combined rotational inertia of the wheel
and tire?

What is Earths radius?

. What is the final rotational speed?
. What is the radius of a bowling ball?

What is the rotational speed of the tire?
What is the required centripetal acceleration?

ties. Letters in parentheses T

efer to

6. The speed you would need to orbit Earth in alow orbit (B P)
7. The magnitude of the force exerted by the Sun on Earth to hold
Earth in orbit B,L T, 7)
8. The kinetic energy associated with Earth's rotation (Z, B D)
9. The angular momentum, about 2 vertical axis through your
house, of a large cat driving down your street (H, Y, M)
10. The kinetic energy of a spinning YO-Y© KW],Q

U. Whatis the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to
reach the end of the string?

X. What is needed in addition to the formulas in principles
Table 11.3 in order to determine this quantity?

Y. Whatisa typical speed for a car moving on a city street?

7. Whatis Earth's inertia?

AA. Whatisa typical freeway cruising speed?

. — S
Key (all values approximate)
A.7kg B. 1y=3 % 107 s; C. solid cylinder(»f radius 0.2 M3
D. period = 24h,s0o0 =7% 1055 E 10! kg; F from
Egs. 8.6, §.17,and 11.16, SE = md,somg = mv?/r; G.2 solid
cylinder with two thin-rod arms of inertia 4 kg held out perpen-
dicularly; H.2 X 10° kg; 1.0.3m3 J.2 X 10" turns;
K.6 % 107 kg" me (with yo-yo modeled as solid cy]indcr);
L2 % 10" ms M.2 X 10" m; N. 4 kg’m"; 0. between MR
(cylindriial shell rcpreseming tire) and MR?/2 (solid cyl'mder

> P6 X 10°m; Q. about twice
the average rotational speed, or @ 5% 10°s 5 R 0.1 m;
S. no slipping, $0 @ =v[r= 1005 T.8 X 10" >m/ &
U.o=10 s V7 X 10" kg; W.0.5 X. the pamlle\—a\xis
theorem; Y.3 X 10" mi/h; Z.6 X 10% kg; AA.3 X 10' m/s

representing wheel)—say, 3MR"/
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Make an urder—of—magnitude estimate of each of the following quanti
hints below. Use them as needed to guide your thinking:

—

The speed ¥ of a point on the equator as Earth rotates (D; P)
_ The rotational inertia of 2 bowling ball aboutan axis
its surface (A, R, X)

Your rotational inertia as you turnt over in yo
The angular momentum around the axle © theel/tire combi-
nation on your car as you cruise o the gfeway (B, 1,0, AA,S)
The angular momentum of 2 spinnipéice skater with each arm
held out to the side and parallel

IS)

w

eep (Vs QC)

e

o

Hints
If needed, see Key for

ers to these guiding questions.

A. What is thggiertia of a bowling ball?
B. How lopda time intervalis needed for Earth to imake one revolu-
tiongfound the Sun?
fat simple geometric shape is an appropriate model for a
eeping person?
D. WhatisE arth’s rotational speed?
. What is the combined inertia of the v
E Whatis the relationship between force an
orbit?
. How can you model the skater’s shape during her
. What is the inertia of a midsize car?
What is the radius of the tire?
How many turns are needed to rewind the yo-yo?
. What s the yo-yo's rotational inertia?
What is the radius of Barthis orbit?
. What is the perpendicular distance from the house to the car’s
line of motion?
What is the skater’s rotational inertia with arms held out?
How can you model the combined rotational inertia of the wheel
and tire?
What is Earths radius?
. What is the final rotational speed?
. What is the radius of a bowling ball?
What is the rotational speed of the tire?
What is the required centripetal acceleration?

1 and tire?
celeration for this

<]

oz grATTES
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ties. Letters in parentheses T

efer to

6. The speed you would need to orbit Earth in alow orbit (B P)
7. The magnitude of the force exerted by the Sun on Earth to hold
Earth in orbit B,L T, 7)
8. The kinetic energy associated with Earth's rotation (Z, B D)
9. The angular momentum, about vertical axis through your
house, of a large cat driving down your street (H, Y, M)
10. The kinetic energy of a spinning YO-Y© KW],Q

U. Whatis the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to
reach the end of the string?

X. What is needed in addition to the formulas in principles
Table 11.3 in order to determine this quantity?

Y. Whatisa typical speed for a car moving on a city street?

. What s Earth's inertia?
AA. Whatisa typical freeway cruising speed?

Key (all values approximate)

A 7ke B.1y=3X% 107 s; C.solid ylinder of radius 0.2 M5
E.10' kg F

Egs. 8.6, .17,and 11.16, SF = md,somg = mv?/r; G.2 solid

cylinder with two thin-rod arms of inertia 4 kg held out perpen-

dicularly; H.2 X 10° kg; 1.0.3m3 J.2 X 10" turns;

K.6 X 10~ kg me (with yo-yo modeled as solid cy]indcr);

L2 % 10" ms M.2 X 10" m; N. 4 kg’m"; 0. between MR

(cylindriial shell rcpreseming tire) and MR*/2 (solid cylinder

representing wheel)—say; 3MR?/4; P.6 X 10° m; Q.about twice

the average rotational speed, or @ 5% 10°s 5 R 0.1 m;

S. no slipping, $0 @ =v[r= 1005 T.8 X 10" >m/ &

U.o=10 s V7 X 10" kg; W.0.5 X. the pamlle\—a\xis

theorem; Y.3 X 10" mi/h; Z.6 X 10% kg; AA.3 X 10' m/s

from
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Make an urder—of—magnitude estimate of each of the following quanti
hints below. Use them as needed to guide your thinking:

—

The speed ¥ of a point on the equator as Earth rotates (D; P)

_ The rotational inertia of a bowling ball about an axis 1#0g tto
its surface (A, R, X)

. Your rotational inertia as you turn over in your Sleep

The angular momentum around the axle ofawheel/

nation on your car as you cruise on the frleeway (E,

IS)

W

o

The angular momentum of 2 spinning ice skater,
held out to the side and parallel w'the ice (G,

Hints
If needed, see Key for grswers to these guidff’g questions.

A. What s the jhertia of a bowling b

B. How longatime interval is need
tion afound the Sun?

C. WhMat simple geometric she
sleeping person?

for Earth to make one revolu-

. is an appropriate model for a

D. Whatis Earth's rotationa peed?

E. Whatis the combined jfertia of the wheel and tire?

E What is the relationy b between force andacceleration for this
orbit?

G. How can youmo /| the skater’s shape during her spin?

H. What is the incffia of a midsize car

I What s the rgflius of the tire?

J. How many ns are needed to rewind the yo-yo?

K. Whatist yo-yos rotational inertia?

L. What isghe radius of Earth’s orbit?

M. Whatjf the perpendicular distance from the house to the car’s
line . motion?

N. Wfatis the skater’s rotational inertia with arms held out?

O n can you model the combined rotational inertia of the wheel

and tire?

P. Whatis Earth's radius?

Q. Whatis the final rotational speed?

R. What is the radius of a bowling ball?

S. Whatis the rotational speed of the tire?

T. Whatis the required centripetal acceleration?

ties. Letters in parentheses T

efer to

6. The speed you would need to orbit Earth in alow orbit (B P)
7. The magnitude of the force exerted by the Sun on Earth to hold
Earth in orbit B,L T, 7)
8. The kinetic energy associated with Earth's rotation (Z, B D)
9. The angular momentum, about 2 vertical axis through your
house, of a large cat driving down your street (H, Y, M)
10. The kinetic energy of a spinning YO-Y© KW],Q

U. Whatis the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to
reach the end of the string?

X. What is needed in addition to the formulas in principles
Table 11.3 in order to determine this quantity?

Y. Whatisa typical speed for a car moving on a city street?

7. Whatis Earth's inertia?

AA. Whatisa typical freeway cruising speed?

.
Key (all values approximate)
A.7kg B.1Y = 3% 10°s; C solid cylinder of radius 0.2 m;
D. period = 24 h,sow =7 %10 5l E.10' kg O
Egs. 8.6, §.17,and 11.16, SF= ma, so mg = MU/ G. asolid
cylinder with two thin-rod arms of inertia 4 kg held out perpen-
dicularly; H.2 X 10° kg; 1.0.3m3 J.2 X 10" turns;
K.6 % 107 kg" me (with yo-yo modeled as solid cylindcr);
L2 % 10" ms M.2 X 10" m; N. 4 kg’m"; 0. between MR
(cylindrlial shell rcpresemlng tire) and MR?/2 (solid cyllnder

> P6 X 10°m; Q. about twice
5% 1075 s R.OImS
S. no slipping, $0 @ —p/r=10"s 5 T.8 X 10 3m/sh
U.o=10 s V7 X 10" kg; W.0.5 X. the pamllel—a\xis
theorem; Y.3 X 10" mi/h; Z.6 X 10% kg; AA.3 X 10' m/s

from

representing wheel)—say, 3MR"/

the average rotational speed, or @
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Make an urder—of—magnitude estimate of each of the following quanti
hints below. Use them as needed to guide your thinking:

—

The speed ¥ of a point on the equator as Earth rotates (D, P)
_ The rotational inertia of a bowling ball about an axis 1#0g tto
its surface (A, R, X)

. Your rotational inertia as you turn over in your Sleep
The angular momentum around the axle ofawheel/
nation on your car as you cruise on the frleeway (E,
The angular momentum of 2 spinning ice skater,
held out to the side and parallel w'the ice (G,

IS)

W

o

Hints
If needed, see Key for grswers to these guidff’g questions.

A. What s the jhertia of a bowling b

B. How longatime interval is need
tion afound the Sun?

C. WhMat simple geometric she
sleeping person?

for Earth to make one revolu-

. is an appropriate model for a

D. Whatis Earth's rotationa peed?

E. Whatis the combined jfertia of the wheel and tire?

E What is the relationy b between force andacceleration for this
orbit?

G. How can youmo /| the skater’s shape during her spin?

H. What is the incffia of a midsize car

I What s the rgfius of the tire?

J. How many ns are needed to rewind the yo-yo?

K. Whatist yo-yos rotational inertia?

L. Whatisghe radius of Earth’s orbit?

M. Whatjf the perpendicular distance from the house to the car’s
linef. motion?

N. Wfatis the skater’s rotational inertia with arms held out?

O w can you model the combined rotational inertia of the wheel

and tire?

ties. Letters in parentheses T

efer to

6. The speed you would need to orbit Earth in alow orbit (B P)
7. The magnitude of the force exerted by the Sun on Earth to hold
Earth in orbit B,L T, 7)
8. The kinetic energy associated with Earth's rotation (Z, B D)
9. The angular momentum, about 2 vertical axis through your
house, of a large cat driving down your street (H, Y, M)
10. The kinetic energy of a spinning YO-Y© KW],Q

U. Whatis the skater’s initial rotational speed?

V. What is your inertia?

W. When thrown, how long a time interval does the yo-yo take to
reach the end of the string?

X. What is needed in addition to the formulas in principles
Table 11.3 in order to determine this quantity?

Y. Whatisa typical speed for a car moving on a city street?

7. Whatis Earth's inertia?

AA. Whatisa typical freeway cruising speed?

. — _
Key (all values approximate)

A.7kg B.1Y = 3% 10°s; C solid cylinder of radius 0.2 m;
D. period = 24 h,sow =7 %10 5. . 10" kg E from

Egs. 8.6, §.17,and 11.16, SFE = md,somg = mv?/r; G.2 solid
cylinder with two thin-rod arms of inertia 4 kg held out perpen-
dicularly; H.2 X 10° kg; 1.0.3m3 J.2 X 10" turns;

K.6 % 107 kg" me (with yo-yo modeled as solid cylindcr);
L2 % 10" ms M.2 X 10" m; N. 4 kg’m"; 0. between MR
(cylindrlial shell rcpresen\llﬁ tire) and MR?/2 (solid cylinder

P. Whatis Earth’s radius? =

Q. Whatis the final rotational speed?

R. What is the radius of a bowling ball?

S. Whatis the rotational speed of the tire?

T. Whatis the required centripetal acceleration?

Q. about twice
5 %X 107s 55 R.0.1m;
S. no slipping, $0 @ =v[r= 0s !’ T.8 X 10" >m/ &
U.w=10 s VT X 10" kg W. 0.5s X.the pamllel—a\xis
theorem; Y.3 X 10" mi/h; Z.6 X 10% kg; AA.3 X 10' m/s

sneaveRy)
ge rotational spced, or @
=1
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Make an urdcr—of—magnitude estimate of each of the following quanti
hints below. Use them as needed to guide your thinking:

ties. Letters in parentheses refer to

6. The speed you would need to orbit Earth in a low orbit (B P)

7. The magnitude of the force exerted by the Sun on E; o hold
Earth in orbit B,L T, 7)

,C) §. The kinetic energy associated with Earth’s rotation

9. The angular momentum, about 2 vertical axis thrj
house, of a large cat dri

10. The kinetic energy ofa

1. The speed ¥ of a point on the equator as Earth rotates (D; P)
2. The rotational inertia of a bowling ball about an axis 1#0g tto

its surface (A, R, X)
Your rotational inertia as you turnt over in your Sleep

The angular momentum around the axle ofawheel/
nation on your car as you cruise on the frleeway (E,
The angular momentum of 2 spinning ice skater,

held out to the side and parallel two'the ice (G

bl

>

o

- —F
Hints
If needed, se¢ Key for s

wers to these guidff'g questions.

£ a bowling byf¢  skat@s initial rotatio’
- inc?
long a time interval does the yo-y©

A. What s the jhertia o

B. How longatime interval is need
tion afound the Sun?

C. WhMat simple geometric S
sleeping person?

take to

? string?
is needed in addition to the formulas in
% 1.3 in order to determine this quantity?
Nhat is a typical speed for a car moving on a ci
7. Whatis Earth's inertia?

AA. Whatisa typical freeway crui

the@ater s during her spin?
ize C
o ? Key (all values approximate)
3% 107 s; C.solid cyllnder(»f radius 0.2 M3

A7kg B.1Y =

D. period = 24 hsow=7%10 550, B.10 kg B from

Egs. 8.6, §.17,and 11.16, SFE = md,somg = mv”

¢ from the house t©© the car’s  cylinder with two thin-rod arms of inertia 4 kg held out perpen-
dicularly; H.2 X 10° kg 1.0.3m; J-2 % 10! turns;

K.6 X 107 7Kkg" me (with yo-yo modeled as solid cylindcr);

L2 % 10" m M.2 X 10" m; N. 4 kg'm?; 0. between MR

Principles

ty street?

sing speed?

ns are needed to rewind the yo-yo?
yo-yos rotational inertia?

radius of Earths orbit?
the perpendicular distanc

/r; G.a solid

line # motion?

. Wfatis the skater’s rotational inertia with arms held out?

n can you model the combined rotational inertia of the wheel
and tire? (cylindrical shell rcpresenlllﬁ tire) and MR?/2 (solid cylinder
S CLL —od)> 1 / Q. about twice
5% 10%s 5 R 0.1 m;

v
ge rotational speed, or @ =
g2s T T.8 X 107 m/sh
W.0.5s; X.the pamllel—a\xls
10% kg; AA.3 X 10' m/s

P. Whatis Earth's radius?
Q. Whatis the final rotational speed?

R. What is the radius of a bowling ball? S. no slipping, s0 @ = ¥
S. Whatis the rotational speed of the tire? U.w=10s" V.7 % 10" kg
T. Whatis the required centripetal acceleration? Y.3 X 10! mi/h; Z.6 X

theorem;

PRACTICE



PRACTICE
Waves in Two and
Three Dimensions

Chapter Summary 304
Review Questions 305
Developing a Feel 306

Questions and Problems 311

30110Vvdd

Answers to Review Questions 316
Answers to Guided Problems 316

darcrnitecuure




238 CHAPTER 13 PRACTICE GRAVITY

Worked Problem 13.3 Escape at last

The Mars Colony wants to launch adeep-space Probe, but they have © Execure PLAN Let us uge i for the initial Mars-probe radjal
10 rocket engines, They decide to launch a probe with an electro- center-to-center Separation distance, 7t = = for the fina] separa-

magnetic cannon, which means they must launch at €scape speed.  tion distance, Ry for the radiys of Mars, and g and my, for the two
P RA' I I Determine this speed. masses. We begin with Eq. 13.23:

My,
@ cetring STARTED Let us do o quick sketch to help our think- Epecy = zlmp")f\c -
ing (Figure WG 13.3). We select the Mars-probe system for analysis. Ry

™ n,
In order to reach “deep space” the Probe must attain 5 very great 15 G _ )
L distance from Mars, This will require o significant amount of initia] 2Vesc IE =
a kinetic energy, which the probe must acquire during launch, After

m
launch, the kinetic energy immediately begins to decrease, and the V= GM
Potential energy of the Mars-probe System increases as the separa- Ru

tion distance increases. We assume a reference frame where Mars [ iy

|
| - M
‘ is fixed and only the probe moves, When the probe is far enough Vese = A% G Ry
away (infinity, really, but Practically it doesn't neeq to go quite this .
far), the kinetic energy has its minimum value, which we can take

N /ety 882 X 105 g
to be zero because the colonists Presumably do not want to supply Yese = 1/2(6.67 X 10 N-m /kg?) 3.40 ><‘1 05m

any more energy than needeq to get the probe out there. The gravi-
tational potentia] energy has its maximum value, which is also zero.
(Remember that universal gravitational potential energy js nega-
tive.) We also assume that the Sun angd other planets haye 5 negli-
gible influence on our system, and we ignore the rotation of Mars.

=502X10°m/s = 5km/s. v

Notice that this speed does not depend on the mass of the probe, A
probe of any other size shot from the cannon would need the same
minimum speed to break free of Mars's 8ravitational puy],

Figure wG13.3

Viaunch = Ves,

(4] EVALUATE REsyLT Our algebraic expression for the escape
speed is plausible because it involves the mags of Mars, the inj.

e v tial center-to-center radial separation distance of our two objects
b /'\:’:m (which is Mars radius), and G, We expect Yesc 10 increase with
robe zero speed f myp because the gravitational puyl increases with increasing mass.
is left We also €Xpect vy, to decrease ag the distance between the launch

Position and Mars’s center increases because the 8ravitational force
can use conservation of energy because the exerted by the plane

Probe has all of the needed kinetic energy at the beginning, asitis o, distance. All this jg ;

shot from a cannon. As the probe travels, this kinetic energy is con-

ional potentia] energy of the Mars-probe System. of) the escape speed from Earth, and 5o the answer is not unreasonable,

the initial speed of the probe acquired at launch, We assumed that the Initial Mars-probe Separation distance js

[ fal energy is the value when the probe is still near €qual to the planets radius. Of course, the length of the cannon may

mary 304 eV surface. The ﬁ“‘}l state 'of.the probe is zero speed él 2 be tens of meters, but this tiny difference woylq have no impact

C ha pte r S u m ite dis ! om Mars, Fhé PTIV[CZ}?[(’S volume analy%es asimi- o5 e Numerical answer, We ignored the rotation of Mars, which

4 tion 13.7, leading to Eq. 13.23, 50 there is noneed 14 Supply a small amount of the needed kinetic energy. We also

. ti o n S 305 ¢ this result again here,.We b°g""_ with Eq. 13.23, s.olving this ignored the effect of the Sun, which js fine for getting away from the

Revl ew Q u es version of an ener.'g.y conservation equation forv; = Vesc in terms of surface of Mars, but we would need to account for it if the destina-
the known quantities. tion was another star.

Developi ng a Feel 306 Guided Problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided 5, pg the spring js compressed, is the gravitational potentia]

to use a compressed SPring to launch 5 Spacecraft. If the spring energy of the Earth-spacecrafy System affected? If so, cap you
w constant is 100,000 N/m and the mass of the Spacecraft is 10,000 ignore this effect?
31 1 '(:J kg, how far must the spring be compressed in order to launch the ¢, What equation allows you to relate the initial and fina] states?
. a nd P ro b I e ms 2 craft to a position outside Earth’ gravitational influence? O Execute PLAN
Q u est I 0 n S o 7. What is your target unknown quantity? Algebraically isolate it
. tions 31 6 = (1] GETTING STARTED on one side of your €quation,

t RGVleW Q ues 1. Describe the problem in your own words, Are there similarities g, Substitute the numerica] values you know to 8et a numerica)

An swers 0 to Worked Problem 13,37 answer,

2. Draw a diagram showing the initial and fina] states. What is

i blems 31 6 the spacecraft’s situation in the 1nal state? OEVALUATE RESUL_T
Answers to Guided Pro o s e pion i e

3. How does the Spacecraft gain the necessary escape speed?

Earth’s mass and radius change?
@ Devise PLAN 10. If you were the head of a design team, would you recommend
4. What law of physics should you invoke? Ppursuing this launch method?

1 dranitecuure
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238 CHAPTER 13 PRACTICE GRAVITY

Worked Problem 13.3 Escape at last

The Mars Colony wants to launch a deep-space probe, but they have
10 rocket engines, They decide to launch a probe with an electro-
magnetic cannon, which means they must launch at escape speed,
Determine this speed.

@ cering STARTED Let us do o quick sketch to help our think-
ing (Figure WG 13.3). We select the Mars-probe system for analysjs,
In order to reach “deep space the probe must attain a very great
distance from Mars, This will require o significant amount of initia]
kinetic energy, which the probe must acquire during launch, After
launch, the kinetic energy immediately begins to decrease, and the
Ppotential energy of the Mars-probe System increases as the separa-
tion distance increases. We assume a reference frame where Mars
is fixed and only the probe moves. When the probe i far enough
away (infinity, really, but Practically it doesn't neeq to go quite this
far), the kinetic energy has its minimum value, which we can take
to be zero because the colonists Presumably do not wang ¢, supply
any more energy than needeq to get the probe out there. The gravi-
tational potentia] energy has its maximum value, which is also zero.
(Remember that universal gravitational potential energy js nega-
tive.) We also assume that the Sun angd other planets haye 5 negli-
gible influence on our system, and we ignore the rotation of Mars.

Figure wG13.3

Viaunch = Ves,

o Yoo

/\rf:m

zero speed
is left

can use conservation of energy because the

eded kinetic energy at the beginning, as it js

s the probe travels, this kinetic energy is con-

ional potentjal energy of the Mars-probe system,

the initia] speed of the probe acquired at launch,

ial energy is the value when the probe s still near

ate of the probe js zero speed at an

Principles volume analyzes a simj-

tion 13,7, leading to Eq. 13.23, 50 there isno need

this result again here, We begin with Eq.13.23, solving this

version of an €nergy conservation €quation for v; = Vesc in terms of
the known quantities.

Guided Problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided
to use a compressed SPring to launch 5 Spacecraft. If the spring
constant is 100,000 N/m and the mass of the spacecraft s 10,000
kg, how far must the spring be compressed in order to launch the
craft to a position outside Earth’ gravitational inflyence?

© GETTING STARTED
L. Describe the problem in your owp words. Are there similarities
to Worked Problem 1332
2. Draw a diagram showing the initial and fina] states. What js
the spacecraft’s situation in the fing] state?
3. How does the Spacecraft gain the necessary escape speed?

O DEVISE pLay
4. What law of physics should you invoke?

(3] EXECUTE PLAN Let us use 7i for the initia] Mars-probe radial
center-to-center Separation distance, 7t = = for the fina] separa-
tion distance, Ry for the radiys of Mars, and g and my, for the two
masses. We begin with Eq. 13.23:

iy,
Ryt

2 =1,.2 _
Eech = MV = G

My
T - M _
M

My
1,2 _ A
2V = G—=
Ry

my

Vese = /ZG'”—

Ryt

\/2( 7 X 101N gy A X 107 kg
Vege = 6.6 sy o=
o /kg 3.40 X 10°m

=502X10°m/s = 5km/s. v

Notice that this speed does not depend on the mass of the probe, A
probe of any other size shot from the cannon would need the same
minimum speed to break free of Marg's 8ravitational puy],

O cvaLuare RESULT Our algebraic expression for the escape
speed is plausible because it involves the mags of Mars, the inj.

(which is Mars radius), and G, We expect Yesc 10 increase with
myp because the gravitational puyl increases with increasing mass.
We also €Xpect vy, to decrease ag the distance between the launch
Position and Mars’s center increases because the 8ravitational force
exerted by the planet on the probe decreases with increasing separa-

We assumed that the Initial Mars-probe Separation distance js
€qual to the planets radius. Of course, the length of the cannon may
be tens of meters, but this tiny difference woylq have no impact
on the numerica] answer. We ignored the rotation of Mars, which
could supply a smaj| amount of the needed kinetic energy. We also
ignored the effect of the Sun, which js fine for getting away from the
surface of Mars, byt we would need to account for it if the destina-
tion was another star.

5. As the spring is compressed, is the gravitational potentia]
energy of the Earth-spacecrafy System affected? If so, cap you
ignore this effect?

6. What equation allows you to relate the initial and fing] states?

O £xEcuTE pLAN
7. What is your target unknown quantity? Algebraically isolate it
on one side of your equatjop,
8. Substitute the numerical values you knoyw to get a numerica]
answer.

O EVALUATE RESyLT

Earth’s mass and radius change?
10. If you were the head of a design team, would you recommend
Ppursuing this launch method?
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Worked Problem 13.3 Escape at last

The Mars Colon
1o rocket engin,
Magnetic cannon, wh,
Determine this speed.

Y Wants to launch a de

ich means they must launch at escape speed,
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is fixed and only the probe
away (infinity, really,
far), the kinetic ¢,

do ™ » supply
e out there. The gravi-

e, which is also zero,
atial energy js nega-
Planets have 5 negli-
he rotation of Mars.

Vo =0
0 ‘o
atry, S =00
zero speed T

is left

DEVISE PLAN We

€an use conservation of energy because the
probe has all of th,

at the beginning, as it js
this kinetic energy is con-
f the Mars-probe system,
We want to know the initia] speed of the probe acquired at launch,
The initial potentia] energy is the value when the probe s still near
the Martian surface, The final state of the probe is zero speed at an
infinite distance from Mars. The Principles volume analyzes a simj-
lar situation in Section 13.7, leading to Eq. 13.23, 50 there isno need
to derive this regy]¢ again here, We begin with Eq.13.23, solving this
version of an €nergy conservation €quation for v; = Vesc in terms of
the known quantities.

Guided Problem 13.4 Spring to the stars

Suppose that, instead of using chemical rockets, NASA decided
to use a compressed SPring to launch 5 Spacecraft. If the spring
constant is 100,000 N/m and the mass of the spacecraft s 10,000
kg, how far must the spring be compressed in order to launch the

craft to a position outside Earth’ gravitational inflyence?

PRACTICE

© GETTING STARTED
L. Describe the problem in your owp, words.
to Worked Problem 1332
2. Draw a diagram showing the initja] and final states, What is
the spacecraft’s situation in the fing] state?
3. How does the Spacecraft gain the necessary escape speed?

Are there similarities

O DEVISE pLay
4. What law of physics should you invoke?

darcrnitecuure

€p-space probe, but they have
es. They decide to launch a probe with an electro-

© ExecuTE pLay Let
center-to-center s,
tion distance,
masses. We

the initjal Mars-probe radial
(i = © for the fina] separa-
> and my; and my, for the two

1 "2
3 M5

G v
Ryt

—
=\ Ja6™

RM

/2( 67 X 107N - gt 642 X 10% kg
Vese = 6. cm A —
o /ke 340 X 106m

=502X10°m/s = 5km/s. v

Notice that this speed does not depend on the mass of the probe, A
probe of any other size shot from the cannon would need the same
minimum speed to break free of Marg's 8ravitational puy],

O cvaLuare RESULT Our algebrajc ey

exerted by the plane
tion distance. All thig Is just what our regu]t predi

An escape speed
of) the escape speed from Earth, and s the answer is not unreasonable,

We assumed that the Initial Mars-probe Separation distance js
€qual to the planets radius. Of course, the length of the cannon may
be tens of meters, but this tiny difference would have no impact
on the numerica] answer. We ignored the rotation of Mars, which
needed kinetic energy. We also
is fine for getting away from the
to account for it if the destina-

5. As the spring is compressed, is the gravitational potentia]
energy of the Earth-spacecrafy System affected? If so, cap you
ignore this effect?

6. What equation allows

O EXECuTE pLAy
7. What js your target unknown
on one side of your equation,
8. Substitute the numerical
answer.

you to relate the initja] apq final states?

quantity? Algebraically isolate it
values you know to 8et a numerical

O EVALUATE RESyLT

Earth’s mass and radius change?
10. If you were the head of a design team, would

you recommend
Ppursuing this launch method?
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Worked Problem 13.3 Escape at last

The Mars Colony wants to launch adeep-space Probe, but they have © Execure PLAN Let us uge i for the initial Mars-probe radjal
10 rocket engines, They decide to launch a probe with an electro- center-to-center Separation distance, 7t = = for the fina] separa-

magnetic cannon, which means they must launch at €scape speed.  tion distance, Ry for the radiys of Mars, and g and my, for the two
P RA' I I Determine this speed. masses. We begin with Eq. 13.23:

My,
@ cetring STARTED Let us do o quick sketch to help our think- Epecy = zlmp")f\c -
ing (Figure WG 13.3). We select the Mars-probe system for analysis. Ry

™ n,
In order to reach “deep space” the Probe must attain 5 very great 15 G _ )
L distance from Mars, This will require o significant amount of initia] 2Vesc IE =
a kinetic energy, which the probe must acquire during launch, After

launch, the kinetic energy immediately begins to decrease, and the 0k = g
| | Potential energy of the Mars-probe System increases as the separa- Ru
[} tion distance increases. We assume a reference frame where Mars R [ myg
‘ is fixed and only the Probe moves. When the probe is far enough Yese = vV ZGE,;
away (infinity, really, but practically it doespt need to 80 quite this - .
far), the kinetic energy has its minimym value, which we can take 11 21 o 642 X 107 kg
to be zero because the colonists Presumably do not wang ¢, supply Poe = /2(6.67 X 10711 N m/kg )WX‘IOTn

any more energy than needeq to get the probe out there. The gravi-
tational potentia] energy has its maximum value, which is also zero.
(Remember that universal gravitational potential energy js nega-
tive.) We also assume that the Sun angd other planets haye 5 negli-
gible influence on our system, and we ignore the rotation of Mars.

=502X10°m/s = 5km/s. v

Notice that this speed does not depend on the mass of the probe, A
probe of any other size shot from the cannon would need the same
minimum speed to break free of Mars's 8ravitational puy],

(4] EVALUATE REsyLT Our algebraic expression for the escape
speed is plausible because it involves the mags of Mars, the inj.

Figure wG13.3

Viaunch = Ves,

e v tial center-to-center radial separation distance of our two objects
b /'\:’:m (which is Mars radius), and G, We expect Yesc 10 increase with
robe zero speed f myp because the gravitational puyl increases with increasing mass.
is left We also €Xpect vy, to decrease ag the distance between the launch

Position and Mars’s center increases because the 8ravitational force

€an use conservation of energy because the exerted by the planet op the probe decreases with increasing separa-
Probe has all of the needed kinetic energy at the beginning, as it js tion distance. All this s :

shot from a cannon. As the probe travels, this kinetic energy is con-
ional potentia] energy of the Mars-probe System. of) the escape speed from Earth, and 5o the answer is not unreasonable,
the initial speed of the probe acquired at launch, We assumed that the Initial Mars-probe Separation distance js
fal energy is the value when the probe is still near €qual to the planets radius. Of course, the length of the cannon may

mary 304 eV surface. The ﬁ“‘}l state 'of.the probe is zero speed él 2 be tens of meters, but this tiny difference woylq have no impact

C ha pte r S u m ite dis ! om Mars. The Principles volume analyzes a simi- on the numerica] answer. We ignored the rotation of Mars, which

tion13.7, leading to Eq. 13.23, 50 there isno need could supply a smal] amount of the needed kinetic energy. We also

! i v, it 31323 solving this ignored the effect of the Sun, which is fine for getting away from the
Review Questions 305

version of an €nergy conservation €quation for y; = Pesc In terms of surface of Mars, byt we would need to account for it if the destina-

the known quantities, tion was another star.

Developing a Feel

Suppose that, instead of using chemical rockets, NASA decided 5, pg the spring js compressed, is the gravitational potentia]

to use a compressed SPring to launch 5 Spacecraft. If the spring energy of the Earth-spacecrafy System affected? If so, cap you
w constant is 100,000 N/m and the mass of the Spacecraft is 10,000 ignore this effect?
31 1 '(:J kg, how far must the spring be compressed in order to launch the ¢, What equation allows you to relate the initial and fina] states?
. a nd P ro b I e ms 2 craft to a position outside Earth’ gravitational influence? O Execute PLAN
Q u est I 0 n S o 7. What is your target unknown quantity? Algebraically isolate it
. tions 31 6 = (1] GETTING STARTED on one side of your €quation,

t RGVleW Q ues 1. Describe the problem in your own words, Are there similarities g, Substitute the numerica] values you know to 8et a numerica)

An swers 0 to Worked Problem 13,37 answer,

2. Draw a diagram showing the initial and fina] states. What is

i blems 31 6 the spacecraft’s situation in the 1nal state? OEVALUATE RESUL_T
Answers to Guided Pro by i

3. How does the Spacecraft gain the necessary escape speed?

Earth’s mass and radius change?
@ Devise PLAN 10. If you were the head of a design team, would you recommend
4. What law of physics should you invoke? Ppursuing this launch method?
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Worked Problem 13.3 Escape at last

The Mars Colony wants to launch a deep-space probe, but theyhave @ EXECUTE p
10 rocket engines, They decide to launch a probe with an electro-

magnetic cannon, which means they must launch a¢ escape speed.
P RAC I I Determine this speed.

(1] GETTING STARTED Let us do a quick sketch to heli our think-

®

center-to-center

ing (Figure WG 13.3). We select the Mars-probe sys

= In order to reach “deep space the probe must atta
distance from Mars, This will require o sig 1t amour
kinetic energy, which the probe must acq i
launch, the kinetic energy immediate] i
u s i f
Dimensi(¢

-G My

Ryt

—
® Vee = 267
RM

/2(6 7 X 10N -kt 642 X 10% kg

Vege = .6 cm Ao T——

o /kg 3.40 X 106,

=502X10°m/s = 5km/s. v

is fixed and only the probe mov,
away (infinity, really, b
far), the kinetic ene,
to be zero becayse

hich is also zero,
nal potcntial energy is negq-
1d other planets have a negli-

Notice that this speed does not depend on the mass of the probe, A
§Stem, JTiVe ignore the rotation of Mars,

probe of any other size shot from the cannon would need the same
minimum speed to break free of Mars's 8ravitational puy],

/a(wags slowing (4] EVALUATE REsyLT Our algebraic expression for the escape
down

= tial center-to-center radial separation distance of our two objects

atry, /.'\;:i (which is Mars radius), and G, We expect Yesc 10 increase with

zero speed my; because the gravitational puyl increases with increasing mags,

is left We also CXpect Ve, to decrease a5 the distance between the launch

Position and Mars’s cener increases because the 8ravitational force

@ pevise PLAN We can use conservation of energy because the exerted by the planet op the probe decreases with increasing separa-
Probe has all of the needed kinetic energy at the beginning, as it is tion distance. A]] this is just what our result predicts,

shot from a cannop, As the probe travels, this kinetic energy is con- An escape speed of 18,000 kmv/h is smafler than (but on the order

verted to gravitational potential energy of the Mars-probe System. of) the escape speed from Earth, and s the answer is not unreasonable,

We want to know the initial speed of the probe acquired at launch, We assumed that the Initial Mars-probe Separation distance js
The initial potentia] nergy is the value when the probe is still near equal to the planet’s radiys, Of course, the length of the cannon may
the Martian surface, The final state of the probe is zero speed atan be tens of meters, but this tiny difference woulq have no impact
Infinite distance from Mars. The Principles volume analyzes a simi- on the numerical answer. We ignored the rotation of Mars, which
lar situation in Section 13.7, leading to Eq. 13.23, 50 there js noneed 14 Supply a small amount of the needed kinetic energy. We also
to derive this result again here. We begin with Eq.13.23, solving this ignored the effect of the Sun, which js fine for getting away from the

version of an €nergy conservation €quation for y; = Pesc In terms of surface of Mars, byt we would need to account for it if the destina-
the known quantities.

Guided Problem 13.4 Spring to the stars

(o)

Chapter Su &‘*’
rie > p
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Suppose that, instead of using chemical rockets, NASA decided 5, pg the spring js compressed, is the gravitational potentia]

to use a compressed SPring to launch 5 Spacecraft. If the spring energy of the Earth-spacecrafy System affected? If so, cap you
w constant is 100,000 N/m and the mass of the Spacecraft is 10,000 ignore this effect?
31 1 E kg, how far must the spring be compressed in order to launch the ¢, What equation allows you to relate the initial and fina] states?
a nd P ro b I e ms 2 craft to a position outside Earth’ gravitational influence? O Execute PLAN
Q u es J '1 S o 7. What is your target unknown quantity? Algebraically isolate it
. tio n S 31 6 = (1] GETTING STARTED on one side of your €quation,

t R eVI ew Q u es 1. Describe the problem in your own words, Are there similarities g, Substitute the numerical values you know to 8et a numerica)

An swe rs 0 to Worked Problem 13,37 answer,

2. Draw a diagram showing the initja] and final states, What is
H ro b I e m s 3 1 6 the spacecraft’s situation in the fing] state? ° EVALUATF RESUITT
Answers to Guide

3. How does the Spacecraft gain the necessary escape speed?

Earth’s mass and radius change?
@ Devise PLAN 10. If you were the head of a design team, would you recommend
4. What law of Physics should you invoke? Ppursuing this launch method?
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Momentum

4.1 Friction
4.2 Inertia
4.3 What determines inertia?
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4.4 Systems
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\ collision
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_.denotes initial condition .. denotes final condition
¥ (before collision) v (after collision)
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_.denotes initial condition
¥ (before collision)

.. denotes final condition
v (after collision)

v, ¥, =0 3,=0 o
i N s IV s 111 m—
v, (m/s)
0.8
collision

0.6 cart 2
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systems & extensive quantities
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creation destruction
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systems & extensive quantities
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input » conserved quantity output
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systems & extensive quantities

conserved quantity in isolated system

can’t change (constant)
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collision collision I
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| 1 1
: Aplx : :
1 1 1
02 F 1 0.02 + - "
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Energy

5.1 Classification of collisions
52 Kinetic energy
5.3 Internal energy
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5.4 Closed systems

5.5 Elastic collisions

5.6 Inelastic collisions

5.7 Conservation of energy
5.8 Explosive separations
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elastic: relative speed unchanged
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elastic: relative speed unchanged
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elastic: relative speed unchanged
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elastic: relative speed unchanged
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elastic: relative speed unchanged

V12i — V1of

==

MV T MyUsi = MV T MUy g

1 1 1

1 2 1 2 1 2 1 2
S MUY T 3 Mp0% = 3 M Vs T 5 My,
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elastic vs. inelastic

1 architecture 2 content



elastic vs. inelastic

before or after?
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elastic vs. inelastic

elastic: reversible

inelastic: irreversible
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elastic vs. inelastic

type relative speed state
elastic unchanged unchanged
inelastic changed changed
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elastic vs. inelastic

type relative speed state
elastic unchanged unchanged
inelastic changed changed

AK
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elastic vs. inelastic

type relative speed state

elastic unchanged unchanged

inelastic changed changed
AK AE_
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conservation of energy

E=K+E_
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conservation of energy

E=K+E_

closed system:

AE =0
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Principle of
Relativity

6.1 Relativity of motion
6.2 Inertial reference frames
6.3 Principle of relativity

§1d3ONOD

6.4 Zero-momentum reference frame

6.5 Galilean relativity

6.6 Center of mass

6.7 Convertible Kkinetic energy

6.8 Conservation laws and relativity
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inertial reference frames

Galilean relativity
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7.4 The effects of interactions

2 7.2 Potential energy
% 7.3 Energy dissipation
% 7.4 Source energy
o 75 Interaction range
7.6 Fundamental interactions
1
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= 7.7 Interactions and accelerations
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potential energy = g
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reversible and irreversible state changes

(a) Coherent deformation: reversible

=

(b) Incoherent deformation: irreversible
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classification of energy

COHERENT INCOHERENT
(mechanical energy) (thermal energy, source energy)

kinetic energy
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classification of energy
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classification of energy

COHERENT INCOHERENT
(mechanical energy) (thermal energy, source energy)

kinetic energy
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energy conversions

| | | | | | | | NONDISSIPATIVE
(reversible)
K U E, E,,
Friction dissipates mechanical energy — ~
irreversibly to thermal energy.
S
K U E, E,
When source energy is converted to
mechanical energy, some dissipates
irreversibly to thermal energy.
g DISSIPATIVE
(irreversible)

Source energy can be converted .,
completely and irreversibly
to thermal energy.
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Work

2 9.1 Force displacement

% 9.2 Positive and negative work

% 9.3 Energy diagrams

o 9.4 Choice of system

»

2

3

= 9.5 Work done on a single particle
w

> 9.6 Work done on a many-particle system
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= 9.8 Power
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energy diagram

We can represent the changes in energy by initial and final bar diagrams . . .

initial energy final energy
1 EIK 1
A I = U
K U E, E,, K U E, E,,
(c) ... or by a single energy diagram.

change in energy

T

1IN
& (L1
=

LT
[T

»
o
=

Changes in system’s energy . . . .. . equal work done on system.

| = [T
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Traditional Principles and Practice

1. Physics and measurement 1. Foundations

2. Motion in one dimension 2. Motion in one dimension
3. Vectors 3. Acceleration

4. Motion in two dimensions 4. Momentum

5. The laws of motion 5. Energy

6. Circular motion 6. Principle of relativity

7. Work and kinetic energy 7. Interactions

8. Potential energy and CoE 8. Force

9. Momentum and collisions 9. Work

10. Rotation about a fixed axis 10. Motion in a plane

11. Rolling motion and angular momentum 11. Motion in a circle

12. Static equilibrium and elasticity 12. Torque

13. Oscillatory motion 13. Gravity

14. The law of gravity 14. Special Relativity

15. Fluid mechanics 15. Periodic Motion

16. Wave motion 16. Waves in one dimension
17. Sound waves 17. Waves in 2 and 3 dimensions
18. Superposition and standing waves 18. Fluids
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4. Motion in two dimensions 4
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. Circular motion ~
. Work and kinetic energy

. Potential energy and CoE

. Momentum and collisions
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Traditional

Physics and measurement
Motion in one dimension
Vectors

Motion in two dimensions
. The laws of motion

. Circular motion

. Work and kinetic energy

. Potential energy and CoE
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. Energy
. Principle of relativity

. Force
. Work

Principles and Practice

. Foundations

. Motion in one dimension
. Acceleration

. Momentum

conservation

. Interactions

dynamics

. Motion in a plane

. Motion in a circle

. Torque

. Gravity

. Special Relativity

. Periodic Motion

. Waves in one dimension

. Waves in 2 and 3 dimensions
. Fluids
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Traditional

Principles and Practice

1. Physics and measurement 1. Foundations

2. Motion in one dimension 2. Motion in one dimension

3. Vectors 3. Acceleration

4. Motion in two dimensions 4. Momentum

5. The laws of motion 5. Energy

6. Circular motion 6. Principle of relativity

7. Work and kinetic energy 7. Interactions

8. Potential energy and CoE 8. Force

9. Momentum and collisions 9. Work

10. Rotation about a fixed axis 10. Motion in a plane

11. Rolling motion and angular momentum 11. Motion in a circle

12. Static equilibrium and elasticity 12. Torque rotation
13. Oscillatory motion 13. Gravity

14. The law of gravity 14. Special Relativity

15. Fluid mechanics 15. Periodic Motion

16. Wave motion 16. Waves in one dimension

17. Sound waves 17. Waves in 2 and 3 dimensions
18. Superposition and standing waves 18. Fluids
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Traditional

Principles and Practice

1. Physics and measurement 1. Foundations

2. Motion in one dimension 2. Motion in one dimension

3. Vectors 3. Acceleration

4. Motion in two dimensions 4. Momentum

5. The laws of motion 5. Energy

6. Circular motion 6. Principle of relativity

7. Work and kinetic energy 7. Interactions

8. Potential energy and CoE 8. Force

9. Momentum and collisions 9. Work

10. Rotation about a fixed axis 10. Motion in a plane

11. Rolling motion and angular momentum 11. Motion in a circle

12. Static equilibrium and elasticity 12. Torque

13. Oscillatory motion 13. Gravity

14. The law of gravity 14. Special Relativity

15. Fluid mechanics 15. Periodic Motion

16. Wave motion 16. Waves in one dimension periodic
17. Sound waves 17. Waves in 2 and 3 dimensions
18. Superposition and standing waves 18. Fluids
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easily custom tailored

TO THE INSTRUCTOR Vi

Table 1 Scheduling matrix

Chapters that can be omitted

Topic Chapters Can be inserted after chapter... without affecting continuity
Mechanics 1-14 6,13-14

Waves 15-17 12 16-17

Fluids 18 9

Thermal Physics 19-21 10 21

Electricity & Magnetism 22-30 12 (but 17 is needed for 29-30) 29-30

Circuits 31-32 26 (but 30 is needed for 32) 32

Optics 33-34 17 34
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Emmy Noether
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Noether inverted
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aesthetically more appealing

1 architecture 2 content



where Is modern physics?
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conservation
as modern
foundation

1. Foundatio 18. Fluids

2. Motion in one 19. Entropy

3. Acceleration 20. Energy transferred thermally

4. Momentum 21. Degradation of energy

5. Energy 22. Electric interactions

6. Principle of relativity 23. The electric field

7. Interactions 24. Gauss's law

8. Force 25. Work and energy in electrostatics
9. Work 26. Charge separation and storage
10. Motion in a plane 27. Magnetic interactions

11. Motion in a circle 28. Magnetic fields of charged particles in motion
12. Torque 29. Changing magnetic fields

13. Gravity 30. Changing electric fields

14. Special Relativity 31. Electric circuits

15. Periodic Motion 32. Electronics

16. Waves in one dimension 33. Ray optics

17. Waves in 2 and 3 dimensions 34. Wave and particle optics
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Foundations 18. Fluids

Motion in one dimension 19. Entropy

Acceleration 20. Energy transferred thermally
Momentum 21. Degradation of energy

Energy 22. Electric interactions

Principle of relativity 23. The electric field

Interactions . Gauss’s law

Force S.R. . Work and energy in electrostatics
W“:rk. | as part Of Charge ?e!oaratlorr and storage

. Motion in a plane . Magnetic interactions

. Motion in a circle mEChanlcs 8. Magnetic fields of charged particles in motion

. Torque . Changing magnetic fields
. Gravity . Changing electric fields

. Special Relativity . Electric circuits

. Periodic Motion 32. Electronics

. Waves in one dimension 33. Ray optics

. Waves in 2 and 3 dimensions 34. Wave and particle optics
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transistors
logic gates
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13. Gravity 30. Changing elect

14. Special Relativity 31. Electric circuits
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CHAPTER

1

Foundaﬂons

This book is developed with the goal of engaging students 10 developing @ conceptua\ framew ork for
the topics presented i introductory physics and t0 develop 0 students the reasoning and problem-

of physics pegins bY defining it and its scOP® of the study of «g]] there 1S in the

d I "
rc h Ite ct u re ol Jeveloped 10 studying physics to other aspects of life also is
2 c Lo oer launches with a discussion of the
ontent e

in grade school.




e Strategy

e Overview

e Topics that are not covered

 Terminology

 Notation and visual representations

e Cautionary notes

e Common student difficulties and concerns

e Sample recommendations from Practica Vol
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Foundations

Motion in one dimension
Acceleration

Momentum

Energy

Principle of relativity
Interactions

Force

Work

. Motion in a plane
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. Motion in a circle

—
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. Torque

-
w

. Gravity

Y
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. Special Relativity

-
Ul

. Periodic Motion

-
(=)

. Waves in one dimension

-
N

. Waves in 2 and 3 dimensions
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largest conceptual gain in @ny course past 6 yrs!
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University af Arkansas

course revisioh based on

preliminary version of manuscript:
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University af Arkansas

course revisioh based on
preliminary version of manuscript:

normalized FCl gain DOUBLED
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For a copy of these slides:

mazur.harvard.edu

Textbook inflo/copies:

pearsonhighered.com/mazurie

Follow me! eric_mazur






