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Plasmonic nanoparticle transfection 
offers desirable features
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Lukianova-Hleb, Ekaterina Y., et al. "Selective gene transfection of individual cells in vitro with plasmonic nanobubbles." Journal of Controlled Release 152.2 (2011): 286-293.
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Can we avoid nanoparticle residue?
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Poration experiments have three components 

3.5mm

Cell culture Laser scanning Image analysis
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Plasmonic substrates attached to petri dishes
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photolithography petri dishes

10µm

Design, simulation, and fabrication of plasmonic pyramid substrate for cell transfection (Paper 9355-16)
Time: 5:40 PM - 6:00 PM, Marinus Huber



Cell culture on plasmonic substrates

cell line: HeLa
type: cervical cancer (immortal)
passaged at 80% confluency
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Ti: sapphire laser scanning for poration
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10µs

10µs

80 fs

rep rate: 100 kHz

peak power: 106 W

energy per pulse: 3µJ

wavelength: 800 nm



fs, Gaussian 

Laser spot needs to hit the sample
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fs, Gaussian 

A non-diffracting light beam 
allows us to scan large areas
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fs, Bessel 

Can scan very large 
areas 

Tsampoula, Xanthi, et al. "Femtosecond cellular transfection using a nondiffracting light beam." Applied Physics 

Letters 91.5 (2007): 053902.
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Performing cell counting to 
quantify poration and viability

increasing fluence

Viability

Poration
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50% of HeLa cells porated with a 40x objective 

Viability 
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Poration with a 4x objective
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85% of HeLa cells porated with a 4x objective 
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Poration with larger dyes
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Not all dextran-porated cells are viable
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Experiments in progress: 
using different cell lines
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What is happening to the membrane?



Membrane-substrate interactions determine 
poration success
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Cells uptake dye molecules through pores in 
membrane

10 µm
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Large pores reduce cell viability
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Quantify 
poration

Quantify 
transfection  

Optimize 
process 

Conclusion: Plasmonic substrates for poration 



Going towards disease-focused applications

Introduction1 Substrates2 Experiments3

Target specific diseases

Lab-on-a-chip

Outlook
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Experiments in progress: 
transfection with DNA plasmids 

Transient 
GFP expression 

Permanent 
GFP expression
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A non-diffracting light beam allows 
us to scan large areas

Dudley, Angela, et al. "Unraveling Bessel beams." Optics and Photonics News24.6 (2013): 22-29.
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Making the leap

Fundamental research

Clinical applications
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