

Plasmonic cell transfection using micropyramid arrays

Nabiha Saklayen

M. Huber, D. I. Vulis, M. Madrid, L. Milling, S. Courvoisier, V. Nuzzo, E. Mazur

Mazur Group Department of Physics and School of Engineering and Applied Sciences Harvard University

Photonics West, 8 February 2015

1 Introduction

1 Introduction

Plasmonic nanoparticle transfection offers desirable features

Lukianova-Hleb, Ekaterina Y., et al. "Selective gene transfection of individual cells in vitro with plasmonic nanobubbles." Journal of Controlled Release 152.2 (2011): 286-293.

High Efficiency	High Viability	High Throughput

Plasmonic nanoparticle transfection offers desirable features

Lukianova-Hleb, Ekaterina Y., et al. "Selective gene transfection of individual cells in vitro with plasmonic nanobubbles." Journal of Controlled Release 152.2 (2011): 286-293.

High Efficiency	High Viability	High Throughput

1 Introduction

Poration experiments have three components

Plasmonic substrates attached to petri dishes

photolithography

petri dishes

Plasmonic substrates attached to petri dishes

photolithography

petri dishes

Design, simulation, and fabrication of plasmonic pyramid substrate for cell transfection (Paper 9355-16) Time: 5:40 PM - 6:00 PM, Marinus Huber

Cell culture on plasmonic substrates

cell line: HeLa type: cervical cancer (immortal) passaged at 80% confluency

Ti: sapphire laser scanning for poration

rep rate: 100 kHz

energy per pulse: 3µJ

peak power: 10⁶ W

wavelength: 800 nm

Laser spot needs to hit the sample

Suitable for scanning smaller regions

A non-diffracting light beam allows us to scan large areas

Can scan very large areas

Tsampoula, Xanthi, et al. "Femtosecond cellular transfection using a nondiffracting light beam." *Applied Physics Letters* 91.5 (2007): 053902.

A non-diffracting light beam allows us to scan large areas

A non-diffracting light beam allows us to scan large areas

Add dye molecules

Laser scanning

Poration

Add dye molecules

Laser scanning

Poration

Calcein AM uptake

Viability

5

1 Introduction

2 Experiments

2 Experiments

Using fluorescence microscopy to image poration and viability

Porated (calcein green)

Using fluorescence microscopy to image poration and viability

Porated (calcein green)

Viable (calcein AM)

Using fluorescence microscopy to image poration and viability

Porated (calcein green)

Viable (calcein AM)

Porated + Viable

Performing cell counting to quantify poration and viability

increasing fluence

50% of HeLa cells porated with a 40x objective

Poration with a 4x objective

Porated (calcein green) Allows poration of specific areas on surface

Poration with a 4x objective

Porated (calcein green)

Viable (calcein AM)

Poration with a 4x objective

Porated (calcein green)

Viable (calcein AM)

Porated + Viable

2 Experiments

85% of HeLa cells porated with a 4x objective

Experiments in progress: using different dyes to determine pore size

Experiments in progress: using different dyes to determine pore size

3 Results

Poration with larger dyes

Porated (dextran 70,000 MW)

Increasing fluence

Poration with larger dyes

Porated (dextran 70,000 MW)

Viable (calcein AM)

2 Experiments

Not all dextran-porated cells are viable

Porated + Viable

Porated (dextran 70,000 MW)

Viable (calcein AM)

1 Introduction

Increasing fluence

2 Experiments

Experiments in progress: using different cell lines

Cell type: MCF10A (human epithelial)

Porated (calcein green)

Experiments in progress: using different cell lines

Cell type: MCF10A (human epithelial)

Porated (calcein green) Viable (calcein AM) Porated + Viable

Experiments in progress: using different cell lines

Cell type: MCF10A (human epithelial)

What is happening to the membrane?

Viable

Porated + Viable

Porated (calcein green)

Viable (calcein AM)

Membrane-substrate interactions determine

poration success

1	1			T			11	1	T	11	T								I	I	1	
•						*			•	-	4.1	-	r	*	•			-		•	•	No.
~	2	-			-			4		-		-	-		1			the second				
1	R	The second	A	i	1744	*		1	*	1	-4*	-	1.00		2.5			A	4			
X		1.	1	×		*	Y		7	5	*	-	-		1			K	4	•		
-			-			*				0	TAT		1		-		1	E	13	3		0
				2		1	×		-		F	1	2		-		The second		•		7.	
				X		1	-		-	The second	*				1.				•			
	•	*						A	•	6				-	-	-	13				×	100
	-		T	-					- 57					L.		in the			:	-	*	
×	4.		-	12.		15							33	-		7.	-	*	ż		4	
		24	1			X												1	•		*	l
×		*	۲.	×	2		1					5	4						No.		Y	100
	~		*	1.			R	*				1		×							1	
	2			1.	•	3	the state	13	CF-	M	A	A	1.			20			P		12	
			1	-	-		-	1.		-	4	4	1								10	t t
											-				1	X		-4		•	10	
			1.								E	No.	Fá		No.	×					120	r.
									E		1	Z	-	1ª				×			L	
H	1	.4	10				K	14	1.20					1	-	N.			1			
5			-	H													11		4			
						-2								13		•				X		1
							*	T	1	-	See.	-	-									ļ
								-	-			-				-	×	×				1000
				1				-	15		14				~		×	X				1
	1				1			1			-	*	×			×		4			X	2
				1		5	New York						-		4	4		~	×	X		
		*	-	K	SIX-	-1							per l	1		2	X	-	1			100
	~		1	×	-		1 AL	1								C	A	-	1.	X		3
	-		K			-	-		A	Fr	at .	IN		-		Not	all.	0	14		•	10.0
	-	-	×		×		×	*					-		-	1	1	11	x			10.5
			~	X			×		*	×			*	- = -					-	×		100
				No.	-7	*	*				*				- 2		-		1			
10 µ																						
Im																						

1 Introduction

Cells uptake dye molecules through pores in

membrane

1 Introduction

Large pores reduce cell viability

2 µm

Conclusion: Plasmonic substrates for poration

Conclusion: Plasmonic substrates for poration

Going towards disease-focused applications

Acknowledgements

Marinus Huber

Daryl Vulis

Marinna Madrid

Alexander Raun

Eric

Mazur

Funding National Science Foundation Howard Hughes Medical Institute AAUW

Dr. Valeria Nuzzo (ECE PARIS Ecole d'Ingenieurs)

Sebastien Courvoisier (University of Geneva)

Prof. Alexander Heisterkamp Leibniz Univ. Hannover)

Prof. Michel Meunier (Polytechnique Montreal)

Dr. Christos Boutopoulos (Polytechnique Montreal) Dr. Alain Viel (Harvard University)

Prof. Chris Schaffer (Cornell University)

Dr. Jun Chen (Nanjing University)

Weilu Shen (Rensselaer Polytechnic Institute)

Lauren Milling (University of Illinois at Urbana-Champagne)

Dr. Adrian Pegoraro (Harvard University)

Dr. Eric Diebold (University of California, Los Angeles)

saklayen@physics.harvard.edu

mazur.harvard.edu

Acknowledgements

Talk later in this session:

Design, simulation, and fabrication of plasmonic pyramid substrate for cell transfection (Paper 9355-16)-Marinus Huber

Time: 5:40 PM - 6:00 PM

<u>Tuesday poster session:</u> **Plasmonic substrates for cell transfection** (Paper 9355-48)- Marinna Madrid Time: 6:00 PM - 8:00 PM

Thank you for your attention!

Plasmonic substrates for poration

saklayen@physics.harvard.edu

mazur.harvard.edu

Extra slides

Experiments in progress: transfection with DNA plasmids

Transient GFP expression

A non-diffracting light beam allows us to scan large areas

Dudley, Angela, et al. "Unraveling Bessel beams." Optics and Photonics News24.6 (2013): 22-29.

Making the leap

