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The future: medicine based on our genes

patient

cancer cells

healthy cells

reinfusion
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plasmid DNA

cell membrane

nucleus
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transient pore gene expression

Transfection introduces genetic vectors into 
cells for gene expression
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Toxicity Efficiency Throughput

Goal VL H H

Requirements for a 
successful transfection platform
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Synthetic DNA delivery systems D. Luo et al. Nature Biotechnology (2000)
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Toxicity Efficiency Throughput

Goal VL H H

Viral transfection M H H

Synthetic DNA delivery systems D. Luo et al. Nature Biotechnology (2000)

Introduction1

Viral transfection is most popular, but comes 
with immunological risks
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Toxicity Efficiency Throughput

Goal VL H H

Polymer/Lipid M M H

Electroporation H H H

Naked DNA VL L H

Viral transfection M H H

Optotransfection L H L

Plasmonic NPs M H H
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Synthetic DNA delivery systems D. Luo et al. Nature Biotechnology (2000)

Introduction1

None of the available transfection methods 
meet all requirements
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Toxicity Efficiency Throughput

Goal VL H H

Optotransfection VL H

Example 1: Optotransfection offers 
high efficiency and low toxicity
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Synthetic DNA delivery systems D. Luo et al. Nature Biotechnology (2000)
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Toxicity Efficiency Throughput

Goal VL H H

Optotransfection VL H

Example 1: Optotransfection offers 
high efficiency and low toxicity
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Synthetic DNA delivery systems D. Luo et al. Nature Biotechnology (2000)
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Toxicity Efficiency Throughput

Goal VL H H

Optotransfection VL H L

Example 1: Optotransfection offers 
extremely low throughput

16

Synthetic DNA delivery systems D. Luo et al. Nature Biotechnology (2000)
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Example 2: Plasmonic nanoparticle transfection 
offers high throughput and high efficiency 
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Toxicity Efficiency Throughput

Goal VL H H

Plasmonic NPs M H H



Example 2: Plasmonic nanoparticle transfection
uses Localized Surface Plasmons (LSPs)
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Toxicity Efficiency Throughput

Goal VL H H

Plasmonic NPs M H H

Plasmonics for pulsed-laser cell surgery: Fundamentals and applications E. Boulais et al. Journal of Photochemisty and Photobiology C: Photochemistry Reviews 2013 



Example 2: Plasmonic nanoparticle transfection
uses Localized Surface Plasmons (LSPs)
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Toxicity Efficiency Throughput

Goal VL H H

Plasmonic NPs M H H

Plasmonics for pulsed-laser cell surgery: Fundamentals and applications E. Boulais et al. Journal of Photochemisty and Photobiology C: Photochemistry Reviews 2013 



Example 2: Plasmonic nanoparticle transfection 
comes with toxicity from particle residue

20
Introduction1

Toxicity Efficiency Throughput

Goal VL H H

Plasmonic NPs M H H

Plasmonics for pulsed-laser cell surgery: Fundamentals and applications E. Boulais et al. Journal of Photochemisty and Photobiology C: Photochemistry Reviews 2013 



Example 2: Plasmonic nanoparticle transfection 
comes with toxicity from particle residue
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Toxicity Efficiency Throughput

Goal VL H H

Need for a new transfection method



New approach: plasmonic pyramid substrates
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plasmonic substrate



New approach: plasmonic pyramid substrates
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laser illumination



New approach: plasmonic pyramid substrates
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plasmonic near-field 
enhancement



New approach: plasmonic pyramid substrates
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bubble formation



New approach: plasmonic pyramid substrates
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introduction of 
molecules



New approach: plasmonic pyramid substrates
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cell manipulation



New approach: plasmonic pyramid substrates
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Plasmonic substrate

Laser scanning

Cell manipulation
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Our micropyramids have nano-apertures on top
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Simulations tell us the geometrical parameters 
for highest near-field enhancement

high near-field 
enhancement
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5nm



Baselength: 2200nm 
Seperation: 1000nm

Top view Cross section

Aperture: 290nm
Gold Thickness: 50nm

Simulations tell us the geometrical parameters 
for highest near-field enhancement
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Pyramids fabricated at
Harvard Center for Nanoscale Science
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Si (100)

Chromium 
deposition

Photolithography is used to fabricate large 
arrays of micropyramids 
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Photolithography Negative squares of 
Cr thin films

Photolithography is used to fabricate large 
arrays of micropyramids 
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Si (100)



Inverted 
pyramids

KOH 
Anisotropic etching

Photolithography is used to fabricate large 
arrays of micropyramids 
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Si (100)



TemplateChromium etch

Photolithography is used to fabricate large 
arrays of micropyramids 
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Si (100)



Gold is deposited at an angle 
to make tipless micropyramids
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Gold is deposited at an angle 
to make tipless micropyramids

1µm
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Template stripping produces final substrate

Silicon template

Gold layer
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Glass coverslip



Template stripping produces final substrate

UV-cured glue
Glass coverslip
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Template stripping produces final substrate

Template-stripping
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Template stripping produces final substrate

Tipless pyramids
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Substrate has a large array 
of consistent pyramids

10µm
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Substrate has a large array 
of consistent pyramids
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Pyramids can have different dimensions
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3.5mm

Samples are ready for cell experiments

Introduction1 Substrates2



Introduction1 Substrates2 Experiments3



Experiments have three components 

3.5mm

Cell culture Laser scanning Image analysis
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Cell culture on plasmonic substrates

cell line: HeLa
type: cervical cancer (immortal)
passaged at 80% confluency
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Laser scanning with Ti: sapphire laser

Introduction1 Substrates2 Experiments3

10µs

10µs

80 fs



Laser scanning with Ti: sapphire laser
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pulse duration: 80 fs

repetition rate: 100 kHz

average power: 300 mW

10µs

80 fs

10µs

peak power: 106 W

energy per pulse: 3µJ

wavelength: 800 nm
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A Gaussian beam allows us to scan small areas

Single cell optical transfection- D. Stevenson et al., J. R. Soc. Interface:2010
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Single cell optical transfection- D. Stevenson et al., J. R. Soc. Interface:2010

A Gaussian beam allows us to scan small areas
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Misalignment of  
even a few microns 
inhibits plasmonic 
enhancement

fs, Gaussian 

A Gaussian beam allows us to scan small areas
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A non-diffracting light beam allows 
us to scan large areas

focusing problem 
eliminated

fs, Bessel 
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A non-diffracting light beam allows 
us to scan large areas

Dudley, Angela, et al. "Unraveling Bessel beams." Optics and Photonics News24.6 (2013): 22-29.
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A non-diffracting light beam allows 
us to scan large areas
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A non-diffracting light beam allows 
us to scan large areas

200µm

Core radius= 30µm



Introduction1

Quantification of cell poration and viability 
using dye molecules

Calcein 
Green 
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Quantification of cell poration and viability 
using dye molecules

Calcein 
Green 

porated cell

Calcein 
AM 
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Quantification of cell poration and viability 
using dye molecules

Calcein 
Green 

porated + viable cell

Calcein 
AM 
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Experimental procedure

1) Add calcein green

2) Laser treatment

3) Washing step

4) Add calcein AM

5) Imaging
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1) Add calcein green

2) Laser treatment

3) Washing step

4) Add calcein AM

5) Imaging
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Experimental procedure



Fluorescence microscopy to 
image poration and viability
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Porated Viable Porated + Viable 

a b ca
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Change in fluence affects poration and viability

increasing fluence

Viability

Poration



50% of HeLa cells porated with a 40x objective 
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Viability

Poration
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Optimizing with 4x objective

Porated Viable Porated + Viable 
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85% of HeLa cells porated with a 4x objective 
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Viability

Poration



Experiments in progress: 
different Dextrans to determine pore size

70,000 
MW

250,000 
MW

500,000 
MW

2,000,000
MW
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648 
MW

Calcein

Dextrans



Introducing larger dyes: Dextran 70,000 MW
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Experiments in progress: 
transfection with DNA plasmids 

Transient 
GFP expression 

Permanent 
GFP expression
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Membrane-substrate interactions determine 
poration success

Introduction1 Substrates2 Experiments3

10 µm



Cells uptake dye molecules through pores in 
membrane
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10 µm



Cells killed by too many large pores
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10 µm
2 µm
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New approach towards cell transfection

Poration

Outlook

Transfection

High throughput
High efficiency 
High viability



Making the leap from 
fundamental research to clinical applications

Fundamental research

Clinical applications

Outlook



Going towards disease-focused applications

Introduction1 Substrates2 Experiments3

Target specific diseases

Lab-on-a-chip

Outlook
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Extra slides
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Simulations to understand the temperature 
evolution on structures

Relate to poration and transfection

Plasmonic 
enhancement

Plasma Nanobubbles
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Simulations to understand the temperature 
evolution on structures

From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles, R. Lachaine, Etienne Boulais, and Michel Munier

Plasmonic 
enhancement Plasma Nanobubble
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Simulations to understand the temperature 
evolution on structures

Electric field
Temperature Model
Plasma Formation
Hydrodynamic Model
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many hotspots

New approach: plasmonic pyramid substrates
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Viability

Efficiency

Maximum efficiency of 50%


